You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
This three-volume classic work is reprinted here as a single volume.
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identif...
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability...
Over the past decade, wavelets and frames have emerged as increasingly powerful tools of analysis on $n$-dimension Euclidean space. Both wavelets and frames were studied initially by using classical Fourier analysis. However, in recent years more abstract tools have been introduced, for example, from operator theory, abstract harmonic analysis, von Neumann algebras, etc. The editors of this volume organized a Special Session on the functional and harmonic analysis of wavelets at the San Antonio (TX) Joint Mathematics Meetings. The goal of the session was to focus research attention on these newly-introduced tools and to share the organizers' view that this modern application holds the promise of providing some deeper understanding and fascinating new structures in pure functional analysis. This volume presents the fruitful results of the lively discussions that took place at the conference
Although much literature exists on the subject of RSA and public-key cryptography, until now there has been no single source that reveals recent developments in the area at an accessible level. Acclaimed author Richard A. Mollin brings together all of the relevant information available on public-key cryptography (PKC), from RSA to the latest applic
Discover the Connections between Different Structures and Fields Discrete Structures and Their Interactions highlights the connections among various discrete structures, including graphs, directed graphs, hypergraphs, partial orders, finite topologies, and simplicial complexes. It also explores their relationships to classical areas of mathematics, such as linear and multilinear algebra, analysis, probability, logic, and topology. The text introduces a number of discrete structures, such as hypergraphs, finite topologies, preorders, simplicial complexes, and order ideals of monomials, that most graduate students in combinatorics, and even some researchers in the field, seldom experience. The...
This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.