You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With its answers to questions such as What is time? and What is space?, this clear, nontechnical treatment makes the principles of relativity more accessible to the general reader. The author gradually introduces Einstein's theory in terms of familiar concepts from high school-level geometry, utilizing more than 60 drawings to illuminate profound yet often simple ideas.
This must-read text presents the pioneering work of the late Professor Jacob (Jack) T. Schwartz on computational logic and set theory and its application to proof verification techniques, culminating in the ÆtnaNova system, a prototype computer program designed to verify the correctness of mathematical proofs presented in the language of set theory. Topics and features: describes in depth how a specific first-order theory can be exploited to model and carry out reasoning in branches of computer science and mathematics; presents an unique system for automated proof verification in large-scale software systems; integrates important proof-engineering issues, reflecting the goals of large-scale verifiers; includes an appendix showing formalized proofs of ordinals, of various properties of the transitive closure operation, of finite and transfinite induction principles, and of Zorn’s lemma.
This is a volume of essays and reviews that delightfully explores mathematics in all its moods — from the light and the witty, and humorous to serious, rational, and cerebral. These beautifully written articles from three great modern mathematicians will provide a source for supplemental reading for almost any math class. Topics include: logic, combinatorics, statistics, economics, artificial intelligence, computer science, and broad applications of mathematics. Readers will also find coverage of history and philosophy, including discussion of the work of Ulam, Kant, and Heidegger, among others.
Realizing that matrices can be a confusing topic for the beginner, the author of this undergraduate text has made things as clear as possible by focusing on problem solving, rather than elaborate proofs. He begins with the basics, offering students a solid foundation for the later chapters on using special matrices to solve problems.The first three chapters present the basics of matrices, including addition, multiplication, and division, and give solid practice in the areas of matrix manipulation where the laws of algebra do not apply. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. He also covers special matrice...
An early but still useful and frequently cited contribution to the science of mathematical economics, this volume is geared toward graduate students in the field. Prerequisites include familiarity with the basic theory of matrices and linear transformations and with elementary calculus. Author Jacob T. Schwartz begins his treatment with an exploration of the Leontief input-output model, which forms a general framework for subsequent material. An introductory treatment of price theory in the Leontief model is followed by an examination of the business-cycle theory, following ideas pioneered by Lloyd Metzler and John Maynard Keynes. In the final section, Schwartz applies the teachings of previous chapters to a critique of the general equilibrium approach devised by Léon Walras as the theory of supply and demand, and he synthesizes the notions of Walras and Keynes. 1961 edition.
This title, first published in 1965, provides an analysis of the forces and mechanisms governing the formation of the overall level of money prices. Even though this problem has a long history, and in spite of its obvious practical importance, it remains one of the most poorly understood questions in economic theory. This title will be of interest to students of monetary economics and the history of economic thought.
In his rich and varied career as a mathematician, computer scientist, and educator, Jacob T. Schwartz wrote seminal works in analysis, mathematical economics, programming languages, algorithmics, and computational geometry. In this volume of essays, his friends, students, and collaborators at the Courant Institute of Mathematical Sciences present recent results in some of the fields that Schwartz explored: quantum theory, the theory and practice of programming, program correctness and decision procedures, dextrous manipulation in Robotics, motion planning, and genomics. In addition to presenting recent results in these fields, these essays illuminate the astonishingly productive trajectory of a brilliant and original scientist and thinker.
None