You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the state of the art in sparse and multiscale image and signal processing, covering linear multiscale transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Matlab and IDL code accompany these methods and applications to reproduce the experiments and illustrate the reasoning and methodology of the research available for download at the associated Web site.
Combining research methods from various areas of mathematics and physics, Probabilistic Models of Cosmic Backgrounds describes the isotropic random sections of certain fiber bundles and their applications to creating rigorous mathematical models of both discovered and hypothetical cosmic backgrounds. Previously scattered and hard-to-find mathematical and physical theories have been assembled from numerous textbooks, monographs, and research papers, and explained from different or even unexpected points of view. This consists of both classical and newly discovered results necessary for understanding a sophisticated problem of modelling cosmic backgrounds. The book contains a comprehensive des...
Extracting the latent underlying structures of complex nonlinear local and nonlocal flows is essential for their analysis and modeling. In this Element the authors attempt to provide a consistent framework through Koopman theory and its related popular discrete approximation - dynamic mode decomposition (DMD). They investigate the conditions to perform appropriate linearization, dimensionality reduction and representation of flows in a highly general setting. The essential elements of this framework are Koopman eigenfunctions (KEFs) for which existence conditions are formulated. This is done by viewing the dynamic as a curve in state-space. These conditions lay the foundations for system reconstruction, global controllability, and observability for nonlinear dynamics. They examine the limitations of DMD through the analysis of Koopman theory and propose a new mode decomposition technique based on the typical time profile of the dynamics.
Presents state-of-the-art sparse and multiscale image and signal processing with applications in astronomy, biology, MRI, media, and forensics.
This book is designed for undergraduates, postgraduates and professionals who want to have a firm grip on the fundamental principles of AI and ML. Artificial Intelligence (AI) is a broad area of knowledge which has percolated into every aspect of human life. ‘Machine Learning algorithms’ are considered to be a subset of AI Theory, mathematics and coding are three aspects to any topic in AI. This book covers the most relevant topics in the field of Artificial Intelligence and Machine Learning (ML). The subdivisions of Machine Learning are Supervised, Unsupervised and Reinforcement learning. All three are covered in sufficient depth. One very important and upcoming field of application is ...
None
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
The first book to provide a detailed discussion of the application of wavelets in wireless communications, this is an invaluable source of information for graduate students, researchers, and telecommunications engineers, managers and strategists. It overviews applications, explains how to design new wavelets and compares wavelet technology with existing OFDM technology. • Addresses the applications and challenges of wavelet technology for a range of wireless communication domains • Aids in the understanding of Wavelet Packet Modulation and compares it with OFDM • Includes tutorials on convex optimisation, spectral factorisation and the design of wavelets • Explains design methods for new wavelet technologies for wireless communications, addressing many challenges, such as peak-to-average power ratio reduction, interference mitigation, reduction of sensitivity to time, frequency and phase offsets, and efficient usage of wireless resources • Describes the application of wavelet radio in spectrum sensing of cognitive radio systems.