You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book was first published in 1943 and then was reprinted several times with corrections. It presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. In addition to initial developments by Stieltjes, Markov, and Chebyshev, later contributions by Hamburger, Nevanlinna, Hausdorff, Stone, and others are discussed. The book also contains some results on the trigonometric moment problem and a chapter devoted to approximate quadrature formulas.
None
Announcements for the following year included in some vols.
Announcements for the following year included in some vols.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this do...
None
The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...