You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Aquatic microorganisms are tidily related to the carbon cycle in aquatic systems, especially in respect to its accumulation and emission to atmosphere. In one hand, the autotrophs are responsible for the carbon input to the ecosystems and trophic chain. On the other hand, the heterotrophs traditionally play a role in the carbon mineralization and, since microbial loop theory, may play a role to carbon flow through the organisms. However, it is not yet clear how the heterotrophs contribute to carbon retention and emission especially from tropical aquatic ecosystems. Most of the studies evaluating the role of microbes to carbon cycle in inland waters were performed in high latitudes and only a...
The Marcell Experimental Forest (MEF) in Minnesota serves as a living laboratory and provides scientists with a fundamental understanding of peatland hydrology, acid rain impacts, nutrient and carbon cycling, trace gas emissions, and controls on mercury transport in boreal watersheds. Its important role in scientific research continues to grow as t
None
Advances in next generation sequencing technologies, omics, and bioinformatics are revealing a tremendous and unsuspected diversity of microbes, both at a compositional and functional level. Moreover, the expansion of ecological concepts into microbial ecology has greatly advanced our comprehension of the role microbes play in the functioning of ecosystems across a wide range of biomes. Super-imposed on this new information about microbes, their functions and how they are organized, environmental gradients are changing rapidly, largely driven by direct and indirect human activities. In the context of global change, understanding the mechanisms that shape microbial communities is pivotal to p...
Organic matter in aquatic environments consists mostly of large compounds which cannot be taken up and utilized directly by microbial cells. Prior to incorporation, polymeric materials undergo degradation by cell-bound and extracellular enzymes produced by these microbes; in fact, such enzymatic mobilization and transformation is the key process which regulates the turnover of organic as well as inorganic compounds in aquatic environments. This volume brings together studies on enzymatic degradation processes from disciplines as diverse as water and sediment research, bacterial and algal aquatic ecophysiology, eutrophication, and nutrient cycling and biogeochemistry, in both freshwater and marine ecosystems. Its scope extends from fundamental research exploring the contribution of microbial enzymatic processes to whole ecosystem functioning to practical applications in water biotechnology. The first comprehensive publication providing an overview of this emerging field of enzymology, Microbial Enzymes in Aquatic Environments will be of great interest to ecologists and microbiologists alike.
No natural resource issue has greater significance for the future of Texas than water. The state's demand for water for municipal, industrial, agricultural, and recreational uses continues to grow exponentially, while the supply from rivers, lakes, aquifers, and reservoirs is limited. To help Texans manage their water resources today and plan for future needs, one of Texas's top water experts has compiled this authoritative overview of water issues in Texas. Water in Texas covers all the major themes in water management and conservation: Living with a Limited Resource The Molecule that Moves Mountains A Texas Water Journey The Gulf Shores of Texas Who's Who in Water Texas Water Law: A Blend of Two Cultures Does Texas Have Enough Water? Planning for the Future What's in Your Water? How Much is Water Worth? Water is Our Legacy Illustrated with color photographs and maps, Water in Texas will be the essential resource for landowners, citizen activists, policymakers, and city planners.
Ecological stoichiometry concerns the way that the elemental composition of organisms shapes their ecology. It deals with the balance or imbalance of elemental ratios and how that affects organism growth, nutrient cycling, and the interactions with the biotic and abiotic worlds. The elemental composition of organisms is a set of constraints through which all the Earth’s biogeochemical cycles must pass. All organisms consume nutrients and acquire compounds from the environment proportional to their needs. Organismal elemental needs are determined in turn by the energy required to live and grow, the physical and chemical constraints of their environment, and their requirements for relatively...