You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ellipsometry is an experimental technique for determining the thickness and optical properties of thin films. It is ideally suited for films ranging in thickness from sub-nanometer to several microns. Spectroscopic measurements have greatly expanded the capabilities of this technique and introduced its use into all areas where thin films are found: semiconductor devices, flat panel and mobile displays, optical coating stacks, biological and medical coatings, protective layers, and more. While several scholarly books exist on the topic, this book provides a good introduction to the basic theory of the technique and its common applications. The target audience is not the ellipsometry scholar, but process engineers and students of materials science who are experts in their own fields and wish to use ellipsometry to measure thin film properties without becoming an expert in ellipsometry itself.
Ellipsometry is an experimental technique for determining the thickness and optical properties of thin films. It is ideally suited for films ranging in thickness from subnanometer to several microns. Spectroscopic measurements have greatly expanded the capabilities of this technique and introduced its use into all areas where thin films are found: semiconductor devices, flat panel and mobile displays, optical coating stacks, biological and medical coatings, protective layers, and more. While several scholarly books exist on the topic, this book provides a good introduction to the basic theory of the technique and its common applications. It follows in the footsteps of two previous books written by one of the authors with important updates to emphasize modern instrumentation and applications. The target audience is not the ellipsometry scholar, but process engineers and students of materials science who are experts in their own fields and wish to use ellipsometry to measure thin film properties without becoming an expert in ellipsometry itself.
This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community. The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.
Spectroscopic ellipsometry has been applied to a wide variety of material and device characterizations in solar cell research fields. In particular, device performance analyses using exact optical constants of component layers and direct analyses of complex solar cell structures are unique features of advanced ellipsometry methods. This second volume of Spectroscopic Ellipsometry for Photovoltaics presents various applications of the ellipsometry technique for device analyses, including optical/recombination loss analyses, real-time control and on-line monitoring of solar cell structures, and large-area structural mapping. Furthermore, this book describes the optical constants of 148 solar cell component layers, covering a broad range of materials from semiconductor light absorbers (inorganic, organic and hybrid perovskite semiconductors) to transparent conductive oxides and metals. The tabulated and completely parameterized optical constants described in this book are the most current resource that is vital for device simulations and solar cell structural analyses.
This second edition, edited by the world-renowned Dr. Rointain Bunshah, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. Considerably more material was added in Plasma Assisted Vapor Deposition processes, as well as Metallurgical Coating Applications.
This second edition, edited by the world-renowned Dr. Rointain Bunshah, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. Considerably more material was added in Plasma Assisted Vapor Deposition processes, as well as Metallurgical Coating Applications.
The Handbook of Ellipsometry is a critical foundation text on an increasingly critical subject. Ellipsometry, a measurement technique based on phase and amplitude changes in polarized light, is becoming popular in a widening array of applications because of increasing miniaturization of integrated circuits and breakthroughs in knowledge of biological macromolecules deriving from DNA and protein surface research. Ellipsometry does not contact or damage samples, and is an ideal measurement technique for determining optical and physical properties of materials at the nano scale. With the acceleration of new instruments and applications now occurring, this book provides an essential foundation for the current science and technology of ellipsometry for scientists and engineers in industry and academia at the forefront of nanotechnology developments in instrumentation, integrated circuits, biotechnology, and pharmaceuticals. Divided into four parts, this comprehensive handbook covers the theory of ellipsometry, instrumentation, applications, and emerging areas. Experts in the field contributed to its twelve chapters, covering various aspects of ellipsometry.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
Ellipsometry is a powerful tool used for the characterization of thin films and multi-layer semiconductor structures. This book deals with fundamental principles and applications of spectroscopic ellipsometry (SE). Beginning with an overview of SE technologies the text moves on to focus on the data analysis of results obtained from SE, Fundamental data analyses, principles and physical backgrounds and the various materials used in different fields from LSI industry to biotechnology are described. The final chapter describes the latest developments of real-time monitoring and process control which have attracted significant attention in various scientific and industrial fields.