You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019, held in Hofgeismar, Germany, in June/July 2019. The 44 papers included in this volume were carefully reviewed and selected for inclusion in this book. They were organized in topical sections named: 3D vision and feature analysis; inpainting, interpolation and compression; inverse problems in imaging; optimization methods in imaging; PDEs and level-set methods; registration and reconstruction; scale-space methods; segmentation and labeling; and variational methods.
This book constitutes the refereed proceedings of the 6th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2017, held in Kolding, Denmark, in June 2017. The 55 revised full papers presented were carefully reviewed and selected from 77 submissions. The papers are organized in the following topical sections: Scale Space and PDE Methods; Restoration and Reconstruction; Tomographic Reconstruction; Segmentation; Convex and Non-Convex Modeling and Optimization in Imaging; Optical Flow, Motion Estimation and Registration; 3D Vision.
The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.
This book constitutes the refereed proceedings of the 8th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2011, held in St. Petersburg, Russia in July , 2011. The book presents 30 revised full papers selected from a total of 52 submissions. The book is divided in sections on discrete and continuous optimization, segmentation, motion and video, learning and shape analysis.
This book constitutes the refereed proceedings of the 4th International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2013, held in Schloss Seggau near Graz, Austria, in June 2013. The 42 revised full papers presented were carefully reviewed and selected 69 submissions. The papers are organized in topical sections on image denoising and restoration, image enhancement and texture synthesis, optical flow and 3D reconstruction, scale space and partial differential equations, image and shape analysis, and segmentation.
This book contains 71 original, scienti?c articles that address state-of-the-art researchrelatedto scale space and variationalmethods for image processing and computer vision. Topics covered in the book range from mathematical analysis of both established and new models, fast numerical methods, image analysis, segmentation, registration, surface and shape construction and processing, to real applications in medical imaging and computer vision. The ideas of scale spaceandvariationalmethodsrelatedtopartialdi?erentialequationsarecentral concepts. The papers re?ect the newest developments in these ?elds and also point to the latest literature. All the papers were submitted to the Second International Conference on Scale Space and Variational Methods in Computer Vision, which took place in Voss, Norway, during June 1–5, 2009. The papers underwent a peer review process similar to that of high-level journals in the ?eld. We thank the authors, the Scienti?c Committee, the Program Committee and the reviewers for their hard work and helpful collaboration. Their contribution has been crucial for the e?cient processing of this book, and for the success of the conference.
The concept of 'shape' is at the heart of image processing and computer vision, yet researchers still have some way to go to replicate the human brain's ability to extrapolate meaning from the most basic of outlines. This volume reflects the advances of the last decade, which have also opened up tough new challenges in image processing. Today's applications require flexible models as well as efficient, mathematically justified algorithms that allow data processing within an acceptable timeframe. Examining important topics in continuous-scale and discrete modeling, as well as in modern algorithms, the book is the product of a key seminar focused on innovations in the field. It is a thorough i...
This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand...
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2011, held in Ein-Gedi, Israel in May/June 2011. The 24 revised full papers presented together with 44 poster papers were carefully reviewed and selected from 78 submissions. The papers are organized in topical sections on denoising and enhancement, segmentation, image representation and invariants, shape analysis, and optical flow.
This book introduces the mathematical concept of partial differential equations (PDE) for virtual image restoration. It provides insight in mathematical modelling, partial differential equations, functional analysis, variational calculus, optimisation and numerical analysis. It is addressed towards generally informed mathematicians and graduate students in mathematics with an interest in image processing and mathematical analysis.