You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
After developing fuzzy set theory, many contributors focused their research on the extension of fuzzy sets and their computational methodologies, strengthening modern science and technology. In some real-life phenomena, the conventional methods and traditional fuzzy sets cannot be explained, whereas the extension of fuzzy sets and effective new computing methods can explain it adequately. This edited book presents a new view of fuzzy set-measurement methods entitled "Fuzzy Optimization, Decision Making and Operations Research: Theory and Applications", which deals with different perspectives and areas of research. All chapters are divided into three parts: fuzzy optimization, fuzzy decision-...
In this paper neutrosophic vague binary G – subalgebra of G – algebra is generated with example. Notions like, 0 – commutative G - subalgebra, minimal element, normal subset etc. are investigated. Conditions to define derivation and regular derivation for this novel concept are clearly presented with example. Constant of G – algebra can’t be treated as the identity element, generally. In this paper, it is well explained with example. Cosets for neutrosophic vague binary G – subalgebra of G - algebra is developed with proper explanation. Homomorphism for this new concept has been also got commented. Its kernel, monomorphism and isomorphism are also have discussed with proper attention.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
The present book contains 20 articles collected from amongst the 53 total submitted manuscripts for the Special Issue “Fuzzy Sets, Fuzzy Loigic and Their Applications” of the MDPI journal Mathematics. The articles, which appear in the book in the series in which they were accepted, published in Volumes 7 (2019) and 8 (2020) of the journal, cover a wide range of topics connected to the theory and applications of fuzzy systems and their extensions and generalizations. This range includes, among others, management of the uncertainty in a fuzzy environment; fuzzy assessment methods of human-machine performance; fuzzy graphs; fuzzy topological and convergence spaces; bipolar fuzzy relations; ...
Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches.
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
In this article, inaugurate interval-valued triangular neutrosophic fuzzy graph (IVTNFG) of SPP, which is drew on three-sided numbers and IVTNFG. Hear a genuine application is given an illustrative model for IVTNFG. Additionally Shortest way is determined for this model. This present Dijkstra's Algorithm briefest way was checked through Python Jupiter Notebook (adaptation) programming.
Developing countries are persistently looking for efficient and cost-effective methods for transforming their communities into smart cities. Unfortunately, energy crises have increased in these regions due to a lack of awareness and proper utilization of technological methods. These communities must explore and implement innovative solutions in order to enhance citizen enrollment, quality of government, and city intelligence. IoT Architectures, Models, and Platforms for Smart City Applications provides emerging research exploring the theoretical and practical aspects of transforming cities into intelligent systems using IoT-based design models and sustainable development projects. This publi...