You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a quantitative yet accessible overview of renewable energy engineering practice and the technologies that will transform our energy supply system over the coming years. Covering wind, hydro, solar thermal, photovoltaic, ocean and bioenergy, the text is suitable for engineering undergraduates as well as graduate students from other numerate degrees. The technologies involved, background theory and how projects are developed, constructed, and operated are described. Worked examples of the simple techniques used to calculate the output of renewable energy schemes engage students by showing how theory relates to real applications. Tutorial chapters provide background material, supporting students from a range of disciplines and ensuring they receive the broad understanding essential for a successful career in the field. Over 150 end-of-chapter problems are included with answers to the problems available in the book and full solutions at www.cambridge.org/jenkins, password-protected for instructors.
Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling...
Smart distribution networks are one of the key research topics of countries looking to modernise electric power networks. Smart Electricity Distributions Networks aims to provide a basic discussion of the smart distribution concept and new technologies related to it, including distributed energy resources (DERs), demand side integration, microgrids, CELL and virtual power plants. With writing from leading contributors in the field of smart distribution networks, this volume discusses different concepts within the field as well as the best methods to analyse smart distribution systems to provide a cohesive overview of issues relating to Smart Grid and related technologies. This book will be valuable to those with an interest in understanding the technologies and performance of smart distribution networks as well as engaging with the wider debate over the future Smart Grid.
WIND ENERGY GENERATION WIND ENERGY GENERATION MODELLING AND CONTROL With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.
Familiarize yourself with the cutting edge of power system protection technology All electrical systems are vulnerable to faults, whether produced by damaged equipment or the cumulative breakdown of insulation. Protection from these faults is therefore an essential part of electrical engineering, and the various forms of protection that have developed constitute a central component of any course of study related to power systems. Particularly in recent decades, however, the demands of decarbonization and reduced dependency on fossil fuels have driven innovation in the field of power systems. With new systems and paradigms come new kinds of faults and new protection needs, which promise to pl...
The economics and locations of sustainable energy sources have meant that many of these new generators are connected into distribution networks. It is recognized that the information flow and control of distribution networks is inadequate for these future low-carbon electricity supply systems. The future distribution network will change its operation from passive to active, and the distributed generators will be controlled to support the operation of the power system. In many countries this transformation of electricity supply is managed through energy markets and privately owned, regulated transmission and distribution systems. --
Comprehensive, cross-disciplinary coverage of Smart Grid issues from global expert researchers and practitioners. This definitive reference meets the need for a large scale, high quality work reference in Smart Grid engineering which is pivotal in the development of a low-carbon energy infrastructure. Including a total of 83 articles across 3 volumes The Smart Grid Handbook is organized in to 6 sections: Vision and Drivers, Transmission, Distribution, Smart Meters and Customers, Information and Communications Technology, and Socio-Economic Issues. Key features: Written by a team representing smart grid R&D, technology deployment, standards, industry practice, and socio-economic aspects. Visi...
The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now expanded to cover increasingly important topics like climate change and renewable power generation. Updated material include...
Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling...
A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts....