You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the most important and crucial problems of space automation in context of future exploration programs. These programs could involve such issues as space situational awareness program, planetary protection, exploitation of minerals, assembly, manufacturing, and search for new habitable location for next human generations. The future exploration of Space and related activities will involve robots. In particular, new autonomous robots need to be developed with high degree of intelligence. Such robots would make space exploration possible but also they would make space automation an important factor in variety of activities related to Space.
This book contains a comprehensive study of the internal ocean waves, which play a very important role in ocean physics providing mechanisms for ocean water mixing and circulation, as well as the transportation of gases, nutrients, and a very large number of marine organisms in the ocean body. In contrast to surface waves, the literature on internal waves is not so numerous, mainly due to the difficulties in experimental data collection and in the mathematical description of internal wave propagation. In this book, the basic mathematical principles, a physical description of the observed phenomena, and practical theoretical methods of determination of wave parameters as well as the original method of observation using moving sensors are presented. Special attention is paid to internal wave propagation over changing bottom topographies in shallow seas such as the Baltic Sea. The book is supplemented with an extended list of relevant and extended bibliographies, a subject index, and an author index.
The occurrence of seismic events in glaciers has been an issue in the scientific literature since the early 1950s, following the report about icequakes in Baffin Island. Targeted seismological studies were undertaken by the Polish Expedition to Spitsbergen in 1962 and then continued at various glaciers in the Arctic, Antarctic and the Alps. The author of the book has been engaged in the project since 1970; he designed the layout of observations and instrumentation. The quakes he observed were categorized into two groups: typical seismic events called icequakes, and relatively long-period events named ice vibrations. In the case of icequakes, the space-time distributions and focal parameters were determined. In the case of ice vibrations, a spectral analysis was made. The present book is a synthesis of the results obtained. There are reports that the number of seismic events in glaciers has recently grown, which may be related to changing geometry of glaciers due to changing thermal conditions.
This book describes the domain of research and investigation of physical, chemical and biological attributes of flowing water, and it deals with a cross-disciplinary field of study combining physical, geophysical, hydraulic, technological, environmental interests. It aims to equip engineers, geophysicists, managers working in water-related arenas as well as advanced students and researchers with the most up to date information available on the state of knowledge about rivers, particularly their physical, fluvial and environmental processes. Information from various but also interrelated areas available in one volume is the main benefit for potential readers. All chapters are prepared by leading experts from the leading research laboratories from all over the world.
This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of...
Since climate and land use strongly affect the runoff pattern and intensity of solute export, it is likely that some observations and conclusions formulated on the basis of investigations carried out in forested catchment may not be fully adequate to describe controls on solute export from agricultural watersheds. The primary objective of the present research is to better understand the flow paths that affect the fluxes of dissolved compounds from a small agricultural catchment during snowmelt. This book focuses on spring snowmelt, because this is the dominant hydrological event in many moderate and high latitude catchments and, thus, is regarded as a prominent factor influencing the quality of surface waters
This book discusses the impacts of climate change that are already being felt on every continent and provides the scientific basis for a number of modern approaches and state-of-the art methods for monitoring the environment, social behavior and human expectations concerning protection of the environment. The book approaches these issues from the perspectives of various disciplines, from physics to the social sciences, and highlights both current challenges and future prospects. On 1 January 2016, the 17 Sustainable Development Goals (SDGs) defined in the 2030 Agenda for Sustainable Development – 12 of which involve taking action on climate change – officially came into force. To achieve sustainable development, it is and will remain crucial to harmonize three interconnected core elements: economic growth, social inclusion and environmental protection.
This book contributes to the current discussion on global environmental changes by discussing modifications in marine ecosystems related to global climate changes. In marine ecosystems, rising atmospheric CO2 and climate changes are associated with shifts in temperature, circulation, stratification, nutrient input, oxygen concentration and ocean acidification, which have significant biological effects on a regional and global scale. Knowing how these changes affect the distribution and abundance of plankton in the ocean currents is crucial to our understanding of how climate change impacts the marine environment. Ocean temperatures, weather and climatic changes greatly influence the amount and location of nutrients in the water column. If temperatures and currents change, the plankton production cycle may not coincide with the reproduction cycle of fish. The above changes are closely related to the changes in radiative forcing, which initiate feedback mechanisms like changes in surface temperature, circulation, and atmospheric chemistry.
This book introduces the theory of stellar atmospheres. Almost everything we know about stars is by analysis of the radiation coming from their atmospheres. Several aspects of astrophysics require accurate atmospheric parameters and abundances. Spectroscopy is one of the most powerful tools at an astronomer’s disposal, allowing the determination of the fundamental parameters of stars: surface temperature, gravity, chemical composition, magnetic field, rotation and turbulence. These can be supplemented by distance measurements or pulsation parameters providing information about stellar interior and stellar evolution, otherwise unavailable. The volume is based on lectures presented at the Wrocław's Spectroscopic School aimed at training young researchers in performing quantitative spectral analysis of low-, mid-, and high-resolution spectra of B, A, and F-type stars.