You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. - Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Introduction to MATLAB Optimization Toolbox - Practical design examples introduce students to the use of optimization methods early in the book - New example problems throughout the text are enhanced with detailed illustrations - Optimum design with Excel Solver has been expanded into a full chapter - New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses
Optimization is a mathematical tool developed in the early 1960's used to find the most efficient and feasible solutions to an engineering problem. It can be used to find ideal shapes and physical configurations, ideal structural designs, maximum energy efficiency, and many other desired goals of engineering. This book is intended for use in a first course on engineering design and optimization. Material for the text has evolved over a period of several years and is based on classroom presentations for an undergraduate core course on the principles of design. Virtually any problem for which certain parameters need to be determined to satisfy constraints can be formulated as a design optimiza...
Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. - Introduces rigorous mathematical methods for digital human modelling and simulation - Focuses on understanding and representing spatial relationships (3D) of biomechanics - Develops an innovative optimization-based approach to predicting human movement - Extensively illustrated with 3D images of simulated human motion (full color in the ebook version)
The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most...
Crime Reconstruction, Second Edition is an updated guide to the interpretation of physical evidence, written for the advanced student of forensic science, the practicing forensic generalist and those with multiple forensic specialists. It is designed to assist reconstructionists with understanding their role in the justice system; the development and refinement of case theory' and the limits of physical evidence interpretation. Chisum and Turvey begin with chapters on the history and ethics of crime reconstruction and then shift to the more applied subjects of reconstruction methodology and practice standards. The volume concludes with chapters on courtroom conduct and evidence admissibility...
A rigorous yet accessible graduate textbook covering both fundamental and advanced optimization theory and algorithms.
Children, , the tiny buds that God plants in the garden of life, are little miracles waiting to be discovered. Their minds are enriched with creativity and imagination. When given the right direction and the motivation, they can do wonders, which most of us only dream about of. I believe in the powers which these little buds have inside them. The pinnacles some of these children have achieved at such tender ages are remarkable. With self-motivation, meditation techniques and improving some techniques of the mind, they can unlock their hidden potential. This book is full of stories of such kids who have done amazing things in their young age and left the whole world awestruck. Some of them ar...
This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emp...
Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve act...