You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Included in this volume are the Invited Talks given at the 5th International Congress of Industrial and Applied Mathematics. The authors of these papers are all acknowledged masters of their fields, having been chosen through a rigorous selection process by a distinguished International Program Committee. This volume presents an overview of contemporary applications of mathematics, with the coverage ranging from the rhythms of the nervous system, to optimal transportation, elasto-plasticity, computational drug design, hydrodynamic and meteorological modeling, and valuation in financial markets. Many papers are direct products of the computer revolution: grid generation, multi-scale modeling, high-dimensional numerical integration, nonlinear optimization, accurate floating-point computations and advanced iterative methods. Other papers demonstrate the close dependence on developments in mathematics itself, and the increasing importance of statistics. Additional topics relate to the study of properties of fluids and fluid-flows, or add to our understanding of Partial Differential Equations.
This twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of the most wide ranging questions in science, from uncovering the fingerprints of classical chaotic dynamics in quantum systems, to predicting the fate of our own planetary system. Its seven articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a complete description by the mathematician É. Ghys of the paradigmatic Lorenz attractor, and of the famed Lorenz butterfly effect as it is unde...
A comprehensive account of Hardy's Z-function, one of the most important functions of analytic number theory.
Proceedings of the NATO Advanced Study Institute on Applications of Random Matrices in Physics, Les Houches, France, 6-25 June 2004
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.
An anthology of articles designed to supplement a first course in number theory.
The Riemann zeta-function is our most important tool in the study of prime numbers, and yet the famous "Riemann hypothesis" at its core remains unsolved. This book studies the theory from every angle and includes new material on recent work.
In this paper the authors apply to the zeros of families of -functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the -correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or -functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of -functions have an underlying symmetry relating to one of the classical compact groups , and . Here the authors complete the work already done with (Conrey and Snaith, Correlations of eige...
This text covers in detail recent developments in the field of stochastic processes and Random Matrix Theory. Matrix models have been playing an important role in theoretical physics for a long time and are currently also a very active domain of research in mathematics.
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.