You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book collects lectures and seminars given at the Les Houches Summer School 2008 on Long-Range Interacting Systems. It reviews state-of-the-art developments in this field, looking at problems of probability, transport theory, statistical mechanics, condensed matter physics, astrophysics and cosmology, physics of plasmas, and hydrodynamics.
This book collects lecture courses and seminars given at the Les Houches Summer School 2010 on "Quantum Theory: From Small to Large Scales". It reviews the state-of-the-art developments in this field by touching on different research topics from an interdisciplinary perspective.
Most of the solid materials we use in everyday life, from plastics to cosmetic gels exist under a non-crystalline, amorphous form: they are glasses. Yet, we are still seeking a fundamental explanation as to what glasses really are and to why they form. In this book, we survey the most recent theoretical and experimental research dealing with glassy physics, from molecular to colloidal glasses and granular media. Leading experts in this field present broad and original perspectives on one of the deepest mysteries of condensed matter physics, with an emphasis on the key role played by heterogeneities in the dynamics of glassiness.
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics--from passive to active.
About sixty years ago, the anomalous magnetic response of certain magnetic alloys drew the attention of theoretical physicists. It soon became clear that understanding these systems, now called spin glasses, would give rise to a new branch of statistical physics. As physical materials, spin glasses were found to be as useless as they were exotic. They have nevertheless been recognized as paradigmatic examples of complex systems with applications to problems as diverse as neural networks, amorphous solids, biological molecules, social and economic interactions, information theory and constraint satisfaction problems.This book presents an encyclopaedic overview of the broad range of these applications. More than 30 contributions are compiled, written by many of the leading researchers who have contributed to these developments over the last few decades. Some timely and cutting-edge applications are also discussed. This collection serves well as an introduction and summary of disordered and glassy systems for advanced undergraduates, graduate students and practitioners interested in the topic.
The book builds on the analogy between social groups and assemblies of molecules to introduce the concepts of statistical mechanics, machine learning and data science. Applying a data analytics approach to molecular systems, we show how individual (molecular) features and interactions between molecules, or "communication" processes, allow for the prediction of properties and collective behavior of molecular systems - just as polling and social networking shed light on the behavior of social groups. Applications to systems at the cutting-edge of research for biological, environmental, and energy applications are also presented. Key features: Draws on a data analytics approach of molecular systems. Covers hot topics such as artificial intelligence and machine learning of molecular trends. Contains applications to systems at the cutting-edge of research for biological, environmental and energy applications. Discusses molecular simulation and links with other important, emerging techniques and trends in computational sciences and society. Authors have a well-established track record and reputation in the field.
Since 1951, the prestigious Les Houches summer school has given rigorous graduate programmes in France. In July 2009, the first Les Houches school outside Europe took place in Singapore. This volume gathers the lectures conducted at the four-week school, focused on two exciting key topics: quantum information science and ultracold atomic physics.
This book addresses and introduces new developments in the field of Quantum Information and Computing (QIC) for a primary audience of undergraduate students. Developments over the past few decades have spurred the need for QIC courseware at major research institutions. This book broadens the exposure of QIC science to the undergraduate market. The subject matter is introduced in such a way so that it is accessible to students with only a first-year calculus background. Greater accessibility allows a broader range of academic offerings. Courses, based on this book, could be offered in the Physics, Engineering, Math and Computer Science departments. This textbook incorporates Mathematica-based...
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics.The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics.