You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vibration and Damping in Distributed Systems, Volume II discusses asymptotic methods, including equations with variable coefficients, asymptotic estimates of eigenfrequencies of membranes and plates, WKB approximations and the wave propagation method of Keller and Rubinow, which are developed and applied to scattering problems. The book provides data on the Rayleigh and max-min methods, Courant's nodal domain theorem, the numerical methods of finite-element, boundary-element and spectral types, and an asymptotic method due to Bolotin. Computer graphics are used to enhance understanding and motivate intuition concerning vibration phenomena. The book exhibits a collection of eigenmodes of membranes and plates. It illustrates special effects associated with focusing, whispering gallery and bouncing ball, as well as dynamic motion sequences of a membrane and a plate. Issues involved in experimental determination of internal damping rates and mechanisms in elastic beams are discussed.
This book discusses a variety of topics related to industrial and applied mathematics, focusing on wavelet theory, sampling theorems, inverse problems and their applications, partial differential equations as a model of real-world problems, computational linguistics, mathematical models and methods for meteorology, earth systems, environmental and medical science, and the oil industry. It features papers presented at the International Conference in Conjunction with 14th Biennial Conference of ISIAM, held at Guru Nanak Dev University, Amritsar, India, on 2–4 February 2018. The conference has emerged as an influential forum, bringing together prominent academic scientists, experts from industry, and researchers. The topics discussed include Schrodinger operators, quantum kinetic equations and their application, extensions of fractional integral transforms, electrical impedance tomography, diffuse optical tomography, Galerkin method by using wavelets, a Cauchy problem associated with Korteweg–de Vries equation, and entropy solution for scalar conservation laws. This book motivates and inspires young researchers in the fields of industrial and applied mathematics.
Presents recent developments in the areas of differential equations, dynamical systems, and control of finke and infinite dimensional systems. Focuses on current trends in differential equations and dynamical system research-from Darameterdependence of solutions to robui control laws for inflnite dimensional systems.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates), when the PDEs themselves are defined on curved surfaces (shells), and when the systems have quasilinear principal parts. To make the book self-contained, the author starts with the necessary background on Riemannian geometry. He then describes differential geometric energy methods that are generalizations of the classical energy methods of the 198...
This volume comprises selected papers from the 21st Conference on System Modeling and Optimization in Sophia Antipolis, France. It covers over three decades of studies involving partial differential systems and equations. Topics include: the modeling of continuous mechanics involving fixed boundary, control theory, shape optimization and moving bou
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by w...
22 papers on control of nonlinear partial differential equations highlight the area from a broad variety of viewpoints. They comprise theoretical considerations such as optimality conditions, relaxation, or stabilizability theorems, as well as the development and evaluation of new algorithms. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.
This conference, organized jointly by UTC and INRIA, is the biennial general conference of the IFIP Technical Committee 7 (System Modelling and Optimization), and reflects the activity of its members and working groups. These proceedings contain a collection of papers (82 from the more than 400 submitted) as well as the plenary lectures presented at the conference.