You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain assoc...
This is an eclectic tome of 100 papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory,information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics ¿ containing 800 pages.It was my preoccupation and collaboration as author, co-author, translator, or co-translator, and editor with many scientists from around the world for long time. Many ideas from this book are to be developed and expanded in future explorations.
Information fusion is an advanced research area which can assist decision makers in enhancing their decisions. This paper aims at designing a new multi-layer framework that can support the process of performing decisions from the obtained beliefs using information fusion. Since it is not an easy task to cross the gap between computed beliefs of certain hypothesis and decisions, the proposed framework consists of the following layers in order to provide a suitable architecture.
The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.
The 2016 International Conference on Civil, Architecture and Environmental Engineering (ICCAE 2016), November 4-6, 2016, Taipei, Taiwan, is organized by China University of Technology and Taiwan Society of Construction Engineers, aimed to bring together professors, researchers, scholars and industrial pioneers from all over the world. ICCAE 2016 is the premier forum for the presentation and exchange of experience, progress and research results in the field of theoretical and industrial experience. The conference consists of contributions promoting the exchange of ideas between researchers and educators all over the world.
This unique book addresses the bioinformatic and statistical modelling and also the analysis of microbiome data using cutting-edge QIIME 2 and R software. It covers core analysis topics in both bioinformatics and statistics, which provides a complete workflow for microbiome data analysis: from raw sequencing reads to community analysis and statistical hypothesis testing. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of QIIME 2 and R for data analysis step-by-step. The data as well as QIIME 2 and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter so that these new methods can be readily applied in their own research. Bioinformatic and Statistical Analysis of Microbiome Data is an ideal book for advanced graduate students and researchers in the clinical, biomedical, agricultural, and environmental fields, as well as those studying bioinformatics, statistics, and big data analysis.
Contributors to current issue (listed in papers’ order): Noel Batista Hernández; C.V. Valenzuela Chicaiza; O.G. Arciniegas Paspuel; P.Y. Carrera Cuesta; D.R. Álvarez Hernández, C.E. Pozo Hernández; E.T. Mejía Álvarez; E.T. Villa Shagnay; S. Guerrón Enríquez; M.A. Tello Cadena; E.M. Pinos Medina; M. Jaramillo Burgos; F. Jara Vaca; R. Aguilar Berrezueta; E.M. Sandoval; B. Villalta Jadán; D. Palma Rivera; L.E. Valencia Cruzaty; M. Reyes Tomalá; C.M. Castillo Gallo, M.R. Velázquez; M.R. Mena Peralta; L. Ricardo Domínguez; D. Andrade Santamaría; X.Cangas Oña; M. Jaramillo Burgos; G.A. Calderón Vallejo; M. Orellana Cepeda; M.F. Galarza Villalba; M.S. Serrano Viteri; I. Ramos Castr...
Papers on neutrosophic and plithogenic sets, logics, probabilities and statistics, on NeutroAlgebra and AntiAlgebra, NeutroGeometry and AntiGeometry, SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra, etc…
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.