You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the fourty-six years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain nearly 300 review articles by distinguished research workers, which have become permanent records for many important developments. Historical Overview Attosecond Laser Pulses History of Conical Refraction Particle Concept of Light Field Quantization in Optics History of Near-Field Optics History of Tunneling Influence of Young's Interference Experiment on Development of Statistical optics Planck, Photon Statistics and Bose-Einstein Condensation
This book covers both experimental and theoretical aspects of nanoscale light scattering and surface roughness. Topics include: spherical particles located on a substrate; surface and buried interface roughness; surface roughness of polymer thin films; magnetic and thermal fluctuations at planar surfaces; speckle patterns; scattering of electromagnetic waves from a metal; multiple wavelength light scattering; nanoroughness standards.
Over the last few decades, the quantum aspects of light have been explored and major progress has been made in understanding the specific quantum aspects of the interaction between light and matter. The domain of classical optics has recently seen many exciting new developments, especially in the areas of nano-optics, nano-antennas, metamaterials, and optical cloaking. Approaches based on single-molecule detection and plasmonics have provided new avenues for exploring light-matter interaction at the nanometre scale. All these topics have in common a trend to consider and use smaller and smaller objects, down to the micrometre, nanometre, and even atomic range. The summer school held in Les Houches in July 2013 treated all these subjects lying at the frontier between nanophotonics and quantum optics, in a series of lectures given by world experts
This resource provides an introduction to nanophotonics, a newly emerged and rapidly evolving field combining optics, quantum physics, material sciences, and electrical engineering. It illustrates the theoretical foundations, as well as the major advances in the field based on artificial metallic and dielectric nanostructures.
Fully revised and in its second edition, this standard reference on nano-optics is ideal for graduate students and researchers alike.
A systematic and accessible treatment of light scattering and transport in disordered media from first principles.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.
This book treats the phenomena and techniques of advanced optics confined in nanometer-scale regions, especially near-field optics and surface as well as local plasmons. Written by internationally distinguished scientists the coverage extends from the basics to the most advanced technologies, system characteristics and methods of manipulation.