Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Geometry, Analysis and Probability
  • Language: en
  • Pages: 363

Geometry, Analysis and Probability

  • Type: Book
  • -
  • Published: 2017-04-26
  • -
  • Publisher: Birkhäuser

This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubédat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Müller R. Rhodes D. Rössler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.

From Probability to Geometry
  • Language: en

From Probability to Geometry

  • Type: Book
  • -
  • Published: 2009
  • -
  • Publisher: Unknown

This is the first of two volumes that contain original research articles submitted by colleagues and friends to celebrate the 60th birthday of Jean-Michel Bismut. These articles cover a wide range of subjects in probability theory, global analysis, and arithmetic geometry to which Jean-Michel Bismut has made fundamental contributions.

From Probability to Geometry
  • Language: en

From Probability to Geometry

  • Type: Book
  • -
  • Published: 2009
  • -
  • Publisher: Unknown

None

Large Deviations and the Malliavin Calculus
  • Language: en
  • Pages: 238

Large Deviations and the Malliavin Calculus

  • Type: Book
  • -
  • Published: 1984
  • -
  • Publisher: Birkhäuser

None

Hypoelliptic Laplacian and Orbital Integrals
  • Language: en
  • Pages: 343

Hypoelliptic Laplacian and Orbital Integrals

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by locali...

2011
  • Language: en
  • Pages: 2983

2011

Particularly in the humanities and social sciences, festschrifts are a popular forum for discussion. The IJBF provides quick and easy general access to these important resources for scholars and students. The festschrifts are located in state and regional libraries and their bibliographic details are recorded. Since 1983, more than 639,000 articles from more than 29,500 festschrifts, published between 1977 and 2010, have been catalogued.

Hypoelliptic Laplacian and Bott–Chern Cohomology
  • Language: en
  • Pages: 211

Hypoelliptic Laplacian and Bott–Chern Cohomology

The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann–Roch–Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott–Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are Kähler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen's superconnections, and a version in families of the 'fantastic cancellations' of McKean–Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more. One tool used in ...

Geometry and Dynamics of Groups and Spaces
  • Language: en
  • Pages: 759

Geometry and Dynamics of Groups and Spaces

Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.

Metric and Differential Geometry
  • Language: en
  • Pages: 401

Metric and Differential Geometry

Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kähler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Müller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang

The Hypoelliptic Laplacian and Ray-Singer Metrics
  • Language: en
  • Pages: 378

The Hypoelliptic Laplacian and Ray-Singer Metrics

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give the proper functional analytic setting in order to study this operator and develop a pseudodifferential c...