Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Data Analysis
  • Language: en
  • Pages: 517

Data Analysis

"Data Analysis" in the broadest sense is the general term for a field of activities of ever-increasing importance in a time called the information age. It covers new areas with such trendy labels as, e.g., data mining or web mining as well as traditional directions emphazising, e.g., classification or knowledge organization. Leading researchers in data analysis have contributed to this volume and delivered papers on aspects ranging from scientific modeling to practical application. They have devoted their latest contributions to a book edited to honor a colleague and friend, Hans-Hermann Bock, who has been active in this field for nearly thirty years.

Symbolic Data Analysis and the SODAS Software
  • Language: en
  • Pages: 476

Symbolic Data Analysis and the SODAS Software

Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events. This book is the result of the work f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT. It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.

Statistical Implicative Analysis
  • Language: en
  • Pages: 511

Statistical Implicative Analysis

Statistical implicative analysis is a data analysis method created by Régis Gras almost thirty years ago which has a significant impact on a variety of areas ranging from pedagogical and psychological research to data mining. Statistical implicative analysis (SIA) provides a framework for evaluating the strength of implications; such implications are formed through common knowledge acquisition techniques in any learning process, human or artificial. This new concept has developed into a unifying methodology, and has generated a powerful convergence of thought between mathematicians, statisticians, psychologists, specialists in pedagogy and last, but not least, computer scientists specialized in data mining. This volume collects significant research contributions of several rather distinct disciplines that benefit from SIA. Contributions range from psychological and pedagogical research, bioinformatics, knowledge management, and data mining.

Data Science, Classification, and Related Methods
  • Language: en
  • Pages: 786

Data Science, Classification, and Related Methods

This volume contains selected papers covering a wide range of topics, including theoretical and methodological advances relating to data gathering, classification and clustering, exploratory and multivariate data analysis, and knowledge seeking and discovery. The result is a broad view of the state of the art, making this an essential work not only for data analysts, mathematicians, and statisticians, but also for researchers involved in data processing at all stages from data gathering to decision making.

Classification, Clustering, and Data Mining Applications
  • Language: en
  • Pages: 642

Classification, Clustering, and Data Mining Applications

This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

Classification, Clustering, and Data Analysis
  • Language: en
  • Pages: 468

Classification, Clustering, and Data Analysis

The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.

New Approaches in Classification and Data Analysis
  • Language: en
  • Pages: 695

New Approaches in Classification and Data Analysis

The subject of this book is the analysis and processing of structural or quantitative data with emphasis on classification methods, new algorithms as well as applications in various fields related to data analysis and classification. The book presents the state of the art in world-wide research and application of methods from the fields indicated above and consists of survey papers as well as research papers.

Data Science and Classification
  • Language: en
  • Pages: 350

Data Science and Classification

Data Science and Classification provides new methodological developments in data analysis and classification. The broad and comprehensive coverage includes the measurement of similarity and dissimilarity, methods for classification and clustering, network and graph analyses, analysis of symbolic data, and web mining. Beyond structural and theoretical results, the book offers application advice for a variety of problems, in medicine, microarray analysis, social network structures, and music.

Analysis of Symbolic Data
  • Language: en
  • Pages: 444

Analysis of Symbolic Data

This book presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.

Advances in Data Science and Classification
  • Language: en
  • Pages: 678

Advances in Data Science and Classification

International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).