Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Kernel Methods in Computational Biology
  • Language: en
  • Pages: 428

Kernel Methods in Computational Biology

  • Type: Book
  • -
  • Published: 2004
  • -
  • Publisher: MIT Press

A detailed overview of current research in kernel methods and their application to computational biology.

Kernel Methods in Computational Biology
  • Language: en

Kernel Methods in Computational Biology

  • Type: Book
  • -
  • Published: 2016
  • -
  • Publisher: Unknown

None

Computational Systems Biology of Cancer
  • Language: en
  • Pages: 463

Computational Systems Biology of Cancer

  • Type: Book
  • -
  • Published: 2012-08-25
  • -
  • Publisher: CRC Press

The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, Fr...

Introduction to Biological Networks
  • Language: en
  • Pages: 329

Introduction to Biological Networks

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

The new research area of genomics-inspired network biology lacks an introductory book that enables both physical/computational scientists and biologists to obtain a general yet sufficiently rigorous perspective of current thinking. Filling this gap, Introduction to Biological Networks provides a thorough introduction to genomics-inspired network bi

Bayesian Phylogenetics
  • Language: en
  • Pages: 398

Bayesian Phylogenetics

  • Type: Book
  • -
  • Published: 2014-05-27
  • -
  • Publisher: CRC Press

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-art Bayesian statistics to the phylogenetics community. The book emphasizes model selection, reflecting recent interest in accurately estimating marginal likelihoods. It also discusses new approaches to improve mixing in Bayesian phylogenetic analyses in which the tree topology varies. In addition, the book covers divergence time estimation, biologically realistic models, and the burgeoning interface between phylogenetics and population genetics.

Engineering Decision Making and Risk Management
  • Language: en
  • Pages: 356

Engineering Decision Making and Risk Management

IIE/Joint Publishers Book of the Year Award 2016! Awarded for ‘an outstanding published book that focuses on a facet of industrial engineering, improves education, or furthers the profession’. Engineering Decision Making and Risk Management emphasizes practical issues and examples of decision making with applications in engineering design and management Featuring a blend of theoretical and analytical aspects, this book presents multiple perspectives on decision making to better understand and improve risk management processes and decision-making systems. Engineering Decision Making and Risk Management uniquely presents and discusses three perspectives on decision making: problem solving,...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 538

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2010-08-17
  • -
  • Publisher: Springer

The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2010, was held in Barcelona, September 20–24, 2010, consolidating the long junction between the European Conference on Machine Learning (of which the ?rst instance as European wo- shop dates back to 1986) and Principles and Practice of Knowledge Discovery in Data Bases (of which the ?rst instance dates back to 1997). Since the two conferences were ?rst collocated in 2001, both machine learning and data m- ing communities have realized how each discipline bene?ts from the advances, and participates to de?ning the challenges, of the sister discipline. Accordingly, a single E...

Machine Learning and Knowledge Discovery in Databases, Part II
  • Language: en
  • Pages: 702

Machine Learning and Knowledge Discovery in Databases, Part II

  • Type: Book
  • -
  • Published: 2011-09-06
  • -
  • Publisher: Springer

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 678

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2011-09-06
  • -
  • Publisher: Springer

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Machine Learning and Knowledge Discovery in Databases, Part III
  • Language: en
  • Pages: 683

Machine Learning and Knowledge Discovery in Databases, Part III

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.