You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P.D.E.s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.
This work is intended for graduate students and research mathematicians interested in functional analysis, several complex variables, analytic spaces, and differential equations.
This volume comprises the proceedings of a conference on the geometric analysis of several complex variables held at POSTECH in June 1997. The conference was attended by scienctists and students from around the globe. Each of the five plenary speakers at the conference gave a short course on a topic of current interest in the field. The lecture write-ups contain cogent and accessible information intended for a broad audience. The volume also includes a tutorial in several complex variables given by Kim and Krantz at the conference. This tutorial is geared toward helping the novice to understand the rest of the material in the book. The bibliographies of the papers give students and young mathematicians a valuable resource for future learning on the topic. This book provides a substantial overview on areas of current activity. Required background for understanding the text is a solid undergraduate education in mathematics and familiarity with first year graduate studies in real and complex analysis. Some exposure to geometry would be helpful. The book is also suitable for use as a supplemental course text.
This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
This book is intended for graduate students and research mathematicians interested in partial differential equations.
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.
Introduction Calderon weights Applications to real interpolation: reiteration and extrapolation Other classes of weights Extrapolation of weighted norm inequalities via extrapolation theory Applications to function spaces Commutators defined by the K-method Generalized commutators The quasi Banach case Applications to harmonic analysis BMO type spaces associated to Calderon weights Atomic decompositions and duality References.
An affine manifold is a manifold with torsion-free flat affine connection - a geometric topologist would define it as a manifold with an atlas of charts to the affine space with affine transition functions. This title is an in-depth examination of the decomposition and classification of radiant affine 3-manifolds - affine manifolds of the type that have a holonomy group consisting of affine transformations fixing a common fixed point.
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop...