You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A canonical quantization approach to classical field theory, this text is suitable for mathematicians interested in theoretical physics as well as to theoretical physicists who use differential geometric methods in their modelling. Introduces differential geometry, the theory of Lie groups, and progresses to discuss the systematic development of a covariant Hamiltonian formulation of field theory. 1988 edition.
This volume presents some of the longstanding research problems of Geometry and Topology. It includes new aspects of mathematical research problems that will be of greatest value to all scientists working within these areas.
This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathéodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all motions of the disk, including those where the disk falls flat and those where it nearly falls flat.The geometric techniques described in this book for symmetry reduction have not appeared in any book before. Nor has the detailed description of the motion of the rolling disk. In this respect, the authors are trail-blazers in their respective fields.
This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and th...
This volume is the result of a conference on Representation Theory of Reductive Groups held in Park City, Utah, April 16-20, 1982, under the auspices of the Department of Mathematics, University of Utah. Funding for the conference was provided by the National Science Foundation. The text includes a number of original papers together with expository articles on work already in print. It is hoped that the volume will be of use to both experts in the field and nonspecialists interested in obtaining some insight into the area. Principal organizers of the conference were Henryk Hecht, Dragan Mili~ie, and Peter Trombi. They would like to express their thanks to the National Science Foundation for their support, to the speakers for their diligence in submitting their manuscripts, and to Carla Curtis, Karen Edge, and Katherine Ruth, for typing the manuscripts which were contributed. v CONTENTS J. Arthur, Multipliers and a Paley-Wiener theorem for real reductive groups .......................................... .
The aim of this book is twofold. On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.
A centenary volume that celebrates, extends and applies Noether's 1918 theorems with contributions from world-leading researchers.
A monograph on some of the ways geometry and analysis can be used in mathematical problems of physical interest. The roles of symmetry, bifurcation and Hamiltonian systems in diverse applications are explored.
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.