You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The entire scope of the BioMEMS field-at your fingertipsHelping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabr
Nanotechnology and regenerative engineering have emerged to the forefront as the most versatile and innovative technologies to foster novel therapeutic techniques and strategies of the twenty-first century. The first edition of Nanotechnology and Tissue Engineering: The Scaffold was the first comprehensive source to explain the developments in nanostructured biomaterials for tissue engineering, the relevance of nanostructured materials in tissue regeneration, and the current applications of nanostructured scaffolds for engineering various tissues. This fully revised second edition, renamed Nanotechnology and Regenerative Engineering: The Scaffold, provides a thorough update to the existing m...
First published in 1997, Principles of Tissue Engineering is the widely recognized definitive resource in the field. The third edition provides a much needed update of the rapid progress that has been achieved in the field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system. This edition includes greatly expanded focus on stem cells, including adult and embryonic stem cells and progenitor populations that may soon lead to new tissue engineering therapies for heart disease,...
None
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, ...
Nanofabrication gives us the ability to mimic biological structures with molecular level precision. Offering a natural progression of topics, Nanotechnology and Tissue Engineering: The Scaffold provides a state-of-the-art account of groundbreaking research in this rapidly emerging area of biomedical engineering. Emphasizing the importance of scaffo
Supported with 140 illustrations, the volume exhaustively covers the micro- and nano-system technologies involved in developing cell-based bioengineering applications. You get full details on efforts to engineer the soluble and insoluble cell microenvironments, including the latest advances in microfluidic devices, surface patterning, 3D scaffolds, and techniques for engineering cellular mechanical properties and topography.
A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering to address the full scope of current and future developments. World-class experts discuss the role of nanobiotechnology in bioanalysis, biomolecular and biomedical nanotechnology, biosensors, biocatalysis and biofuel, and education and workforce development. It includes a companion CD that contains all figures in the book. The book begins with dis...
This detailed volume explores recent developments in microfluidics technologies for cancer diagnosis and monitoring. The book is divided into two sections that delve into techniques for liquid biopsy for cancer diagnosis and platforms for precision oncology or personalized medicine in order to create effective patient avatars for testing anti-cancer drugs. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microfluidic Systems for Cancer Diagnosis serves as an ideal guide that will be helpful to either replicate the construction of microfluidic devices specifically developed for cancer diagnosis or to catalyze development of new and better cancer diagnostic devices.
Tissues, Cultures, Art narrates the twenty-five years of collaborative and sometimes provocative artistic practice and scholarly thought of Catts & Zurr, who pioneered the use of regenerative biology techniques to create Semi-Living art using living cells, tissues, and technological surrogate bodies. Through hands-on work in biological laboratories, the authors researched concepts such as partial-life and DNA-Chauvinism and explored the fantasies of living in a technologically mediated victimless utopia. The authors delve into life’s resistance to reductionism, systemisation and control, asking whether there is something unique to life without the need to resort to metaphysics. Their practices reach beyond the confines of art and are often cited as precursors to the cellular agriculture and biofabrication industries. Through a hybrid of personal reflections, poetics, and anecdotes with a more rigorous, scholarly approach – all illustrated with artworks - the authors present a critical view on the use of life as a raw material for human manipulation.