You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Photosynthesis is a fundamental process that drives almost all life on Earth, and is the motor of agriculture and food production. For several decades, its basic functioning has been investigated mainly at steady-state, under constant illumination. This approach was necessary to understand the basic mechanisms underlying the light reactions and carbon assimilation. However, this condition does not reflect the natural environment, where plants experience changes in both the intensity and spectrum of irradiance in a wide range of time scales, spanning from seconds to several hours. In recent years, it has become clear that the processes allowing the photosynthetic apparatus to adapt to changes...
Discusses and explains the major advances that the new technology of applying molecular genetic techniques of modifying carbon and nitrogen in plants has provided, giving insights into its applications for the benefits of agriculture, the environment and man. The text is divided into three sections, the first focusing on primary nitrogen and carbon assimilation and carbon partitioning; the second looking at compartmentation, transport and whole plant interactions; and the third to related metabolism to provide a comprehensive and up-to-date account of this subject.
An attractive, pocket-sized gift book featuring a collection of prayers specially commisioned for all at work in today's hectic world.
This is a thorough study of photosynthetic mechanisms from cells to leaves, crown, and canopy. The authors question whether photosynthetic adaptations take place primarily at the metabolic and biochemical level or through changes in structure and form, or both. The text goes on to analyze the relative importance of genes that control metabolic and light reactions, and the structure, arrangement, and orientation of photosynthesis.
Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems is a unique book that aims to show an integrated approach to the understanding of photosynthesis processes. In this volume - using mathematical modeling - processes are described from the biophysics of the interaction of light with pigment systems to the mutual interaction of individual plants and other organisms in canopies and large ecosystems, up to the global ecosystem issues. Chapters are written by 44 international authorities from 15 countries. Mathematics is a powerful tool for quantitative analysis. Properly programmed, contemporary computers are able to mimic complicated processes in living cells, leaves, canopies and ecosystems. These simulations - mathematical models - help us predict the photosynthetic responses of modeled systems under various combinations of environmental conditions, potentially occurring in nature, e.g., the responses of plant canopies to globally increasing temperature and atmospheric CO2 concentration. Tremendous analytical power is needed to understand nature's infinite complexity at every level.
Written by leading experts in the area of carotenoid research, this book gives a comprehensive overview of a various topics in the field. The contributions review the basic hypotheses about how carotenoids function and give details regarding testing different molecular models using state-of-the-art experimental methodologies.
Plant Biology is a new textbook written for upper-level undergraduate and graduate students. It is an account of modern plant science, reflecting recent advances in genetics and genomics and the excitement they have created. The book begins with a review of what is known about the origins of modern-day plants. Next, the special features of plant genomes and genetics are explored. Subsequent chapters provide information on our current understanding of plant cell biology, plant metabolism, and plant developmental biology, with the remaining three chapters outlining the interactions of plants with their environments. The final chapter discusses the relationship of plants with humans: domestication, agriculture and crop breeding. Plant Biology contains over 1,000 full color illustrations, and each chapter begins with Learning Objectives and concludes with a Summary.
Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage...
Chlorophyll a Fluorescence: A Signature of Photosynthesis highlights chlorophyll (Chl) a fluorescence as a convenient, non-invasive, highly sensitive, rapid and quantitative probe of oxygenic photosynthesis. Thirty-one chapters, authored by 58 international experts, provide a solid foundation of the basic theory, as well as of the application of the rich information contained in the Chl a fluorescence signal as it relates to photosynthesis and plant productivity. Although the primary photochemical reactions of photosynthesis are highly efficient, a small fraction of absorbed photons escapes as Chl fluorescence, and this fraction varies with metabolic state, providing a basis for monitoring q...