You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We are delighted to present the inaugural Frontiers in Cardiovascular Medicine “Rising Stars” article collection. This collection showcases the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers were individually nominated by the Chief Editors of the Journal in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of cardiovascular medicine, including the elucidation of fundamental biology, the development of novel diagnostics or therapeutics, computational modelling approaches, and bioengineering strategies for regeneration.
Written by world-leading experts, this book focusses on the role of biomaterials in stem cell research and regenerative medicine. Emphasising basic principles and methodology, it covers stem cell interactions, fabrication technologies, design principles, physical characterisation and biological evaluation, across a broad variety of systems and biomaterials. Topics include: stem cell biology, including embryonic stem cells, IPS, HSC and progenitor cells; modern scaffold structures, including biopolymer, bioceramic, micro- and nanofiber, ECM and biohydrogel; advanced fabrication technologies, including computer-aided tissue engineering and organ printing; cutting-edge drug delivery systems and gene therapy techniques; and medical applications spanning hard and soft tissues, the cardiovascular system and organ regeneration. With a contribution by Nobel laureate Shinya Yamanaka, this is a must-have reference for anyone in the field of biomaterials, stem cell biology and engineering, tissue engineering and regenerative medicine.
Much has evolved in the field of aortic valve disease because of the increase in knowledge in the last decade, especially in the area of its management. This book "Aortic Valve" is comprised of 18 chapters covering basic science, general consideration of aortic valve disease, infective endocarditis, aortic sclerosis and aortic stenosis, bioprosthetic valve, transcatheter aortic valve implantation and a special section on congenital anomalies of the aortic valve. We hope this book will be particularly useful to cardiologists and cardiovascular surgeons and trainees. We also believe that this book will be a valuable resource for radiologists, pathologists, cardiovascular anesthesiologists, and other healthcare professionals who have a special interest in treating patients with aortic valve disease. We are certain that information in this book will help to provide virtually most new areas of aortic valve disease that will be employed in the current era.
With a new preface outlining the most recent critical developments, this updated edtion of The Future of the Professions predicts how technology will transform the work of doctors, teachers, architects, lawyers, and many others in the 21st century, and introduces the people and systems that may replace them.
June 28-29, 2018 Berlin, Germany Key Topics : Natural Polymers, Advanced Biopolymers, Bioplastics, Bioinformatics, Biopolymer Applications, Biopolymers as Materials, Green Composites in Biopolymers, Biopolymers for Tissue Engineering and Regenerative Medicine, Biodegradable polymers, Biopolymers in Biomedical Applications, Biopolymers in Biofibers & Microbial Cellulose, Recycling & Waste management of Biopolymers, Future & Scope of Biopolymers, Biopolymer Companies & Market,
"3D bioprinting" refers to processes in which an additive manufacturing approach is used to create devices for medical applications. This volume considers exciting applications for 3D bioprinting, including its use in manufacturing artificial tissues, surgical models, and orthopedic implants. The book includes chapters from leaders in the field on 3D bioprinting of tissues and organs, biomedical applications of digital light processing, biomedical applications of nozzle-free pyro-electrohydrodynamic jet printing of buffer-free bioinks, additive manufacturing of surgical models, dental crowns, and orthopedic implants, 3D bioprinting of dry electrodes, and 3D bioprinting for regenerative medicine and disease modeling of the ocular surface. This is an accessible reference for students and researchers on current 3D bioprinting technology, providing helpful information on the important applications of this technology. It will be a useful resource to students, researchers, and practitioners in the rapidly growing global 3D bioprinting community.
Hydrogels are made from a three-dimensional network of cross linked hydrophilic polymers or colloidal particles that contain a large fraction of water. In recent years, hydrogels have attracted significant attention for a variety of applications in biology and medicine. This has resulted in significant advances in the design and engineering of hydrogels to meet the needs of these applications. This handbook explores significant development of hydrogels from characterization and applications. Volume 1 covers state-of-art knowledge and techniques of fundamental aspects of hydrogel physics and chemistry with an eye on bioengineering applications. Volume 2 explores the use of hydrogels in the interdisciplinary field of tissue engineering. Lastly volume 3 focuses on two important aspects of hydrogels, that is, drug delivery and biosensing. Contains 50 colour pages.
The American Heart Association’s Scientific Sessions 2016 is bringing big science, big technology, and big networking opportunities to New Orleans, Louisiana this November. This event features five days of the best in science and cardiovascular clinical practice covering all aspects of basic, clinical, population and translational content.