You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.
Variational methods in mechanics and physical models.- Fluid flows in dielectric porous media.- The impact of a jet with two fluids on a porous wall.- Critical point methods in nonlinear eigenvalue problems with discontinuities.- Maximum principles for elliptic systems.- Exponential dichotomy of evolution operators in Banach spaces.- Asymptotic properties of solutions to evolution equations.- On some nonlinear elastic waves biperiodical or almost periodical in mechanics and extensions hyperbolic nonlinear partial differential equations.- The controllability of infinite dimensional and distributed parameter systems.- Singularities in boundary value problems and exact controllability of hyperb...
Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities.
This volume is the second of two volumes representing leading themes of current research in nonlinear analysis and optimization. The articles are written by prominent researchers in these two areas and bring the readers, advanced graduate students and researchers alike, to the frontline of the vigorous research in important fields of mathematics. This volume contains articles on optimization. Topics covered include the calculus of variations, constrained optimization problems, mathematical economics, metric regularity, nonsmooth analysis, optimal control, subdifferential calculus, time scales and transportation traffic. The companion volume (Contemporary Mathematics, Volume 513) is devoted t...
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations hav...
This treatment focuses on the analysis and algebra underlying the workings of convexity and duality and necessary/sufficient local/global optimality conditions for unconstrained and constrained optimization problems. 2015 edition.
Introduces applied mathematicians and graduate students to an original relaxation method based on a continuous extension of various optimization problems relating to convex compactification; it can be applied to problems in optimal control theory, the calculus of variations, and non-cooperative game theory. Reviews the background and summarizes the general theory of convex compactifications, then uses it to obtain convex, locally compact envelopes of the Lebesague and Sobolev spaces involved in concrete problems. The nontrivial envelopes cover the classical Young measures as well as various generalizations of them, which can record the limit behavior of fast oscillation and concentration effects. Annotation copyrighted by Book News, Inc., Portland, OR
"Based on the International Federatiojn for Information Processing WG 7.2 Conference, held recently in Pisa, Italy. Provides recent results as well as entirely new material on control theory and shape analysis. Written by leading authorities from various desciplines."
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. The Handbook of Semidefinite Programming offers an advanced and broad overview of the current state of the field. It contains nineteen chapters written by the leading experts on the subject. The chapters are organized in three parts: Theory, Algorithms, and Applications and Extensions.