You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski’s equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic fun...
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. There is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. In covering these and other topics, this book underlines the unifying role of the monogropy group.
Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.
Gromov-Witten theory started as an attempt to provide a rigorous mathematical foundation for the so-called A-model topological string theory of Calabi-Yau varieties. Even though it can be defined for all the Kähler/symplectic manifolds, the theory on Calabi-Yau varieties remains the most difficult one. In fact, a great deal of techniques were developed for non-Calabi-Yau varieties during the last twenty years. These techniques have only limited bearing on the Calabi-Yau cases. In a certain sense, Calabi-Yau cases are very special too. There are two outstanding problems for the Gromov-Witten theory of Calabi-Yau varieties and they are the focus of our investigation.
This book contains the proceedings of the conference on Compact Moduli and Vector Bundles, held from October 21-24, 2010, at the University of Georgia. This book is a mix of survey papers and original research articles on two related subjects: Compact Moduli spaces of algebraic varieties, including of higher-dimensional stable varieties and pairs, and Vector Bundles on such compact moduli spaces, including the conformal block bundles. These bundles originated in the 1970s in physics; the celebrated Verlinde formula computes their ranks. Among the surveys are those that examine compact moduli spaces of surfaces of general type and others that concern the GIT constructions of log canonical models of moduli of stable curves. The original research articles include, among others, papers on a formula for the Chern classes of conformal classes of conformal block bundles on the moduli spaces of stable curves, on Looijenga's conjectures, on algebraic and tropical Brill-Noether theory, on Green's conjecture, on rigid curves on moduli of curves, and on Steiner surfaces.
This book explores the study of singular spaces using techniques from areas within geometry and topology and the interactions among them.
On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This work presents the written versions of all but three of the invited talks presented at this Symposium. It contains 2 papers by invited speakers who aren't able to attend.
Expository articles on Several Complex Variables and its interactions with PDEs, algebraic geometry, number theory, and differential geometry, first published in 2000.