You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The usual "implementation” of real numbers as floating point numbers on existing computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. During the last years research in different areas has been intensified in order to overcome these problems. (LEDA-Library by K. Mehlhorn et al., "Exact arithmetic with real numbers” by A. Edalat et al., Symbolic algebraic methods, verification methods). The latest development is the combination of symbolic-algebraic methods and verification methods to so-called hybrid methods. – This book contains a collection of worked out talks on these subjects given during a Dagstuhl seminar at the Forschungszentrum für Informatik, Schlo€ Dagstuhl, Germany, presenting the state of the art.
Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. Early attempts to apply linear programming methods practical problems failed, in part because of the inexactness of the data used to create the models. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
This book constitutes the refereed proceedings of the 6th International Workshop on Reachability Problems, RP 2012, held in Bordeaux, France, in September, 2012. The 8 revised full papers presented together with 4 invited talks were carefully reviewed and selected from 15 submissions. The papers present current research and original contributions related to reachability problems in different computational models and systems such as algebraic structures, computational models, hybrid systems, logic and verification. Reachability is a fundamental problem that appears in several different contexts: finite- and infinite-state concurrent systems, computational models like cellular automata and Petri nets, decision procedures for classical, modal and temporal logic, program analysis, discrete and continuous systems, time critical systems, and open systems modeled as games.
This book constitutes the refereed proceedings of the 16th International Symposium on Static Analysis, SAS 2009, held in Los Angeles, CA, USA in August 2009 - co-located with LICS 2009, the 24th IEEE Symposium on Logic in Computer Science. The 21 revised full papers presented together with two invited lectures were carefully reviewed and selected from 52 submissions. The papers address all aspects of static analysis including abstract domains, abstract interpretation, abstract testing, compiler optimizations, control flow analysis, data flow analysis, model checking, program specialization, security analysis, theoretical analysis frameworks, type based analysis, and verification systems.
Explore the applications of range analysis to power systems under conditions of uncertainty In Interval Methods for Uncertain Power System Analysis, accomplished engineer Dr. Alfredo Vaccaro delivers a comprehensive discussion of the mathematical foundations of range analysis and its application to solving traditional power system operation problems in the presence of strong and correlated uncertainties. The book explores highly relevant topics in the area, from interval methods for uncertainty representation and management to a variety of application examples. The author offers readers the latest methodological breakthroughs and roadmaps to implementing the mathematics discussed within, as ...
A high-impact, prestigious, annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.
An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.
A survey book focusing on the key relationships and synergies between automatic differentiation (AD) tools and other software tools, such as compilers and parallelizers, as well as their applications. The key objective is to survey the field and present the recent developments. In doing so the topics covered shed light on a variety of perspectives. They reflect the mathematical aspects, such as the differentiation of iterative processes, and the analysis of nonsmooth code. They cover the scientific programming aspects, such as the use of adjoints in optimization and the propagation of rounding errors. They also cover "implementation" problems.
Data processing has become essential to modern civilization. The original data for this processing comes from measurements or from experts, and both sources are subject to uncertainty. Traditionally, probabilistic methods have been used to process uncertainty. However, in many practical situations, we do not know the corresponding probabilities: in measurements, we often only know the upper bound on the measurement errors; this is known as interval uncertainty. In turn, expert estimates often include imprecise (fuzzy) words from natural language such as "small"; this is known as fuzzy uncertainty. In this book, leading specialists on interval, fuzzy, probabilistic uncertainty and their combination describe state-of-the-art developments in their research areas. Accordingly, the book offers a valuable guide for researchers and practitioners interested in data processing under uncertainty, and an introduction to the latest trends and techniques in this area, suitable for graduate students.