You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text supplement contains 12 exploratory exercises designed to facilitate students' understanding of the most elemental concepts encountered in a first real analysis course: notions of boundedness, supremum/infimum, sequences, continuity and limits, limit suprema/infima, and pointwise and uniform convergence. In designing the exercises, the [Author];s ask students to formulate definitions, make connections between different concepts, derive conjectures, or complete a sequence of guided tasks designed to facilitate concept acquisition. Each exercise has three basic components: making observations and generating ideas from hands-on work with examples, thinking critically about the examples...
Every mathematician must make the transition from the calculations of high school to the structural and theoretical approaches of graduate school. Essentials of Mathematics provides the knowledge needed to move onto advanced mathematical work, and a glimpse of what being a mathematician might be like. No other book takes this particular holistic approach to the task. The content is of two types. There is material for a ""transitions"" course at the sophomore level; introductions to logic and set theory, discussions of proof writing and proof discovery, and introductions to the number systems (natural, rational, real, and complex). The material is presented in a fashion suitable for a Moore M...
Environmental Mathematics seeks to marry the most pressing challenge of our time with the most powerful technology of our time - mathematics. This book does this at an elementary level and demonstrates a wide variety of significant environmental applications that can be explored without resorting to calculus. Environmental Mathematics in the Classroom includes several chapters accessible enough to be a text in a general education course or to enrich an elementary algebra course. Ground-level ozone, pollution and water use, preservation of whales, mathematical economics, the movement of clouds over a mountain range, at least one population model, and a smorgasbord of 'newspaper mathematics' can be studied at this level and would form a stimulating course. It would prepare future teachers not only to learn basic mathematics, but to understand how they can integrate it into other topics that will intrigue students.
Contains the Budget Message of the President, information on the President's priorities and FY 2014 Federal Government budget overviews by agency, and summary tables for Fiscal Year 2014, that runs from October 1, 2013, through September 30, 2014.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard's mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics--in algebraic geometry, complex analysis, and other esoteric subdisciplines that are rarely written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, a...
Contains the Budget Message of the President, information on the President's priorities and budget overviews by agency, and summary tables.
This book is about some of the topics that form the foundations for high school mathematics. It focuses on a closely-knit collection of ideas that are at the intersection of algebra, arithmetic, combinatorics, geometry, and calculus. Most of the ideas are classical: methods for fitting polynomial functions to data, for summing powers of integers, for visualizing the iterates of a function defined on the complex plane, or for obtaining identities among entries in Pascal's triangle. Some of these ideas, previously considered quite advanced, have become tractable because of advances in computational technology. Others are just beautiful classical mathematics, topics that have fallen out of fashion and that deserve to be resurrected. Most importantly, the book is about some mathematical ways of thinking the author found extremely useful, both in his roles as a mathematician and as a mentor of young people learning to do mathematics.
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
Most introduction to proofs textbooks focus on the structure of rigorous mathematical language and only use mathematical topics incidentally as illustrations and exercises. In contrast, this book gives students practice in proof writing while simultaneously providing a rigorous introduction to number systems and their properties. Understanding the properties of these systems is necessary throughout higher mathematics. The book is an ideal introduction to mathematical reasoning and proof techniques, building on familiar content to ensure comprehension of more advanced topics in abstract algebra and real analysis with over 700 exercises as well as many examples throughout. Readers will learn a...