You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bioreaction engineering is fundamental to the optimization of biotechnological processes and the production of biochemicals by enzymes, microbial, plant and animal cells and higher organisms. A reference text for postgraduate students and researchers in biochemical engineering and bioreactor design, Multiphase Bioreactor Design describes the
This book describes the essential steps in the development of biocatalytic processes from concept to completion. It is a carefully integrated text which combines the fundamentals of biocatalysis with technological experience and in-depth commercial case studies. The book starts with an introductory look at the characteristics and present applications of biocatalysts, followed by more detailed overviews of these areas.
Stem cell bioprocessing describes the main large-scale bioprocessing strategies for both stem cell culture and purification, envisaging the application of these cells for regenerative medicine and drug screening. Bioreactor configurations are described, including their applications for stem cell expansion, and stem cell separation techniques such as isolation and purification are discussed. Basic definitions are provided concerning the different types of stem cells, from adult stem cells to the more recent induced pluripotent stem cells. The main characteristics of these different stem cell types are described, alongside the molecular mechanisms underlying their self-renewal and differentiat...
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the p...
Biotechnology has been labelled as one of the key technologies of the last two decades of the 20th Century, offering boundless solutions to problems ranging from food and agricultural production to pharmaceutical and medical applications, as well as environmental and bioremediation problems. Biological processes, however, are complex and the prevailing mechanisms are either unknown or poorly understood. This means that adequate techniques for data acquisition and analysis, leading to appropriate modeling and simulation packages that can be superimposed on the engineering principles, need to be routine tools for future biotechnologists. The present volume presents a masterly summary of the most recent work in the field, covering: instrumentation systems; enzyme technology; environmental biotechnology; food applications; and metabolic engineering.
Biotechnology is one of the major technologies of the twenty-first century. Its wide-ranging, multi-disciplinary activities include recombinant DNA techniques, cloning and the application of microbiology to the production of goods from bread to antibiotics. In this new edition of the textbook Basic Biotechnology, biology and bioprocessing topics are uniquely combined to provide a complete overview of biotechnology. The fundamental principles that underpin all biotechnology are explained and a full range of examples are discussed to show how these principles are applied; from starting substrate to final product. A distinctive feature of this text are the discussions of the public perception of biotechnology and the business of biotechnology, which set the science in a broader context. This comprehensive textbook is essential reading for all students of biotechnology and applied microbiology, and for researchers in biotechnology industries.
While the potential of stem cells is recognized, their proliferation and differentiation must be more precisely controlled to maximize the production of therapeutically relevant cells and for cell replacement therapies to minimize contamination with residual cells that can give rise to side effects. How can engineers make contributions to address these challenges? With contributions from pioneers and experts, Stem Cell Engineering: Principles and Practices highlights recent advances in the understanding of the cellular and molecular composition of the stem cell niche, as well as approaches to build upon this basic information to direct stem cell differentiation into therapeutically valuable ...
This book contains material contributed by forward-looking scientists who work at the interface of stem cell research and applied science with the aim to improve human fetal safety and the understanding of human developmental and degenerative disorders. Provides important platforms and contemporary accounts of the state of stem cell research in the fields of toxicology and teratology Considers both in vitro uses of stem cells as platforms for teratology and also stem cellopathies, which are in vivo developmental and degenerative disorders Helps the pharmaceutical industry and safety and environmental authorities validate the status quo of in vitro toxicity test systems based on human pluripotent stem cells and their derivatives
It is an exciting time to follow the new developments in the field of biotechnology and its wider applications in the different areas. The whole genomes of over 1000 viruses and over 100 microbes can now be found in Entrez Genome. The genomes represent both completely sequenced organisms and those for which sequencing is still in progress. The three main domains of life - bacteria, archaea, and eukaryota - are represented, as well as many viruses and organelles. The exponential increase of the sequence data lead to the development of the new "Bioinformatics" field in order to attempt making sense, at least biological sense, out of all the new and fast data.It will take also other techniques ...
Immobilized Microbial Cells, Volume 4 provides an overview of the methods of immobilization, applications, and ways of utilizing immobilized microbial cells and subcellular organelles and chloroplasts as biocatalysts. This volume is comprised of seven chapters. It begins with the historical background of immobilized cell research. Subsequent chapters focus on the methods of immobilization and applications of immobilized microbial cells, living cells, and organelles. The last two chapters discuss gas production of immobilized cells for energy generation and the chemical engineering analysis of immobilized-cell systems. The book will be of great use to chemists and chemical engineers.