You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is dedicated to the analysis and modelling of fractional behaviours that mainly result from physical stochastic phenomena (diffusion, adsorption or aggregation, etc.) of a population (ions, molecules, people, etc.) in a constrained environment and that can be found in numerous areas. It breaks with the usual approaches based on fractional models since it proposes to use unusual models which have the advantage of overcoming some of the limitations of fractional models. This book is dedicated to postgraduated students and to researchers in the field or those who wish to learn with a fresh perspective. After a review of fractional models and their limitations, it proposes and demonstrates the interest of four other modelling tools to capture fractional behaviours: new kernels in integral operators, Volterra equations, nonlinear models and partial differential equations with spatially variable coefficients. Several applications on real data and devices illustrate their efficiency.
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
This book provides an overview of the research done and results obtained during the last ten years in the fields of fractional systems control, fractional PI and PID control, robust and CRONE control, and fractional path planning and path tracking. Coverage features theoretical results, applications and exercises. The book will be useful for post-graduate students who are looking to learn more on fractional systems and control. In addition, it will also appeal to researchers from other fields interested in increasing their knowledge in this area.
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
The book presents selected, extended and peer reviewed papers from the International Multiconference on System, Automation and Control held Leipzig in 2018. These are complemented with solicited contributions by international experts. Main topics are automatic control, robotics, synthesis of automation systems. Application examples range from man-machine interaction, mechatronics, on to biological and economical models.
This book focuses on the latest endeavors relating researches and developments conducted in fields of control, robotics and automation. Through more than ten revised and extended articles, the present book aims to provide the most up-to-date state of the art of the aforementioned fields allowing researcher, Ph.D. students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in the same volume a factual and well-balanced prospect of nowadays research in those topics. Special attention toward “Intelligent Robots and Control” may characterize another benefit of this book.
Less mathematics and more working examples make this textbook suitable for almost any type of user.
This book gives a practical overview of Fractional Calculus as it relates to Signal Processing
This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.