You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadratu...
As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, f...
Over the past eighty years, martingales have become central in the mathematics of randomness. They appear in the general theory of stochastic processes, in the algorithmic theory of randomness, and in some branches of mathematical statistics. Yet little has been written about the history of this evolution. This book explores some of the territory that the history of the concept of martingales has transformed. The historian of martingales faces an immense task. We can find traces of martingale thinking at the very beginning of probability theory, because this theory was related to gambling, and the evolution of a gambler’s holdings as a result of following a particular strategy can always b...
This textbook on geophysics is a translated and revised editon from its third German edition Einfhrung in die Geophysik - Globale physikalische Felder und Prozesse in der Erde. Explaining the technical terminology, it introduces students and the interested scientific public to the physics of the Earth at an intermediate level. In doing so, it goes far beyond a purely phenomenological description, but systematically explains the physical principles of the processes and fields which affect the entire Earth: Its position in space; its internal structure; its age and that of its rocks; earthquakes and how they are used in exploring Earths structure; its shape, tides, and isostatic equilibrium; E...
This book examines the historically unique conditions under which the International Congress of Mathematicians took place in Oslo in 1936. This Congress was the only one on this level to be held during the period of the Nazi regime in Germany (1933–1945) and after the wave of emigrations from it. Relying heavily on unpublished archival sources, the authors consider the different goals of the various participants in the Congress, most notably those of the Norwegian organizers, and the Nazi-led German delegation. They also investigate the reasons for the absence of the proposed Soviet and Italian delegations. In addition, aiming to shed light onto the mathematical dimension of the Congress, the authors provide overviews of the nineteen plenary presentations, as well as their planning and development. Biographical information about each of the plenary speakers rounds off the picture. The Oslo Congress, the first at which Fields Medals were awarded, is used as a lens through which the reader of this book can view the state of the art of mathematics in the mid-1930s.
A thorough introduction to graduate classical numerical analysis, with all important topics covered rigorously.
A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis...
This book covers different aspects of umbral calculus and of its more recent developments. It discusses the technical details in depth, including its relevant applications. The book has therefore manyfold scopes to introduce a mathematical tool, not widespread known as it should be; to present a complete account of the relevant capabilities through the use of different examples of applications; to provide a formal bridge between different fields of research in pure and applied.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this do...
Numerički postupci II: Korjeni i sustavi jednadžbi Numerische Methoden II: Wurzeln und sistems gleichungs Métodos Numéricos II: Raíces y sistems de ecuaciones Численные методы II: Корни и системс уравнений