You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...
The collected works of Kurt Godel is designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy.
This is the softcover reprint of the very popular hardcover edition. The theory of large cardinals is currently a broad mainstream of modern set theory, the main area of investigation for the analysis of the relative consistency of mathematical propositions and possible new axioms for mathematics. The first of a projected multi-volume series, this book provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research. A a oegenetica approach is taken, presenting the subject in the context of its historical development. With hindsight the consequential avenues are pursued and the most elegant or accessible expositions given. With open questions and speculations provided throughout the reader should not only come to appreciate the scope and coherence of the overall enterprise but also become prepared to pursue research in several specific areas by studying the relevant sections.
Contains the proceedings of the conference Groups and Model Theory, held 2011, in Ruhr, Germany. Articles cover abelian groups, modules over commutative rings, permutation groups, automorphism groups of homogeneous structures such as graphs, relational structures, geometries, topological spaces or groups, consequences of model theoretic properties like stability or categoricity, subgroups of small index, the automorphism tower problem, as well as random constructions.
The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.
This book introduces a general method for building infinite mathematical structures, and surveys its applications in algebra and model theory. The basic idea behind the method is to build a structure by a procedure with infinitely many steps, similar to a game between two players that goes on indefinitely. The approach is new and helps to simplify, motivate and unify a wide range of constructions that were previously carried out separately and by ad hoc methods. The first chapter provides a resume of basic model theory. A wide variety of algebraic applications are studied, with detailed analyses of existentially closed groups of class 2. Another chapter describes the classical model-theoretic form of this method -of construction, which is known variously as 'omitting types', 'forcing' or the 'Henkin-Orey theorem'. The last three chapters are more specialised and discuss how the same idea can be used to build uncountable structures. Applications include completeness for Magidor-Malitz quantifiers, and Shelah's recent and sophisticated omitting types theorem for L(Q). There are also applications to Bdolean algebras and models of arithmetic.
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
Inauguraldissertation an der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern.
Set theory is an autonomous and sophisticated field of mathematics that is extremely successful at analyzing mathematical propositions and gauging their consistency strength. It is as a field of mathematics that both proceeds with its own internal questions and is capable of contextualizing over a broad range, which makes set theory an intriguing and highly distinctive subject. This handbook covers the rich history of scientific turning points in set theory, providing fresh insights and points of view. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in mathematics, the history of philosophy, and any discipline such as computer science, cognitive psychology, and artificial intelligence, for whom the historical background of his or her work is a salient consideration - Serves as a singular contribution to the intellectual history of the 20th century - Contains the latest scholarly discoveries and interpretative insights
Constraint Satisfaction Problems (CSPs) are natural computational problems that appear in many areas of theoretical computer science. Exploring which CSPs are solvable in polynomial time and which are NP-hard reveals a surprising link with central questions in universal algebra. This monograph presents a self-contained introduction to the universal-algebraic approach to complexity classification, treating both finite and infinite-domain CSPs. It includes the required background from logic and combinatorics, particularly model theory and Ramsey theory, and explains the recently discovered link between Ramsey theory and topological dynamics and its implications for CSPs. The book will be of interest to graduate students and researchers in theoretical computer science and to mathematicians in logic, combinatorics, and dynamics who wish to learn about the applications of their work in complexity theory.