Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Art of Theoretical Biology
  • Language: en
  • Pages: 162

The Art of Theoretical Biology

This beautifully crafted book collects images, which were created during the process of research in all fields of theoretical biology. Data analysis, numerical treatment of a model, or simulation results yield stunning images, which represent pieces of art just by themselves. The approach of the book is to present for each piece of visualization a lucid synopsis of the scientific background as well as an outline of the artistic vision.

Free Boundary Problems
  • Language: en
  • Pages: 461

Free Boundary Problems

This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.

Multiscale Cancer Modeling
  • Language: en
  • Pages: 492

Multiscale Cancer Modeling

  • Type: Book
  • -
  • Published: 2010-12-08
  • -
  • Publisher: CRC Press

Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Dynamics Of Cancer: Mathematical Foundations Of Oncology
  • Language: en
  • Pages: 533

Dynamics Of Cancer: Mathematical Foundations Of Oncology

The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.

Interface Problems and Methods in Biological and Physical Flows
  • Language: en
  • Pages: 184

Interface Problems and Methods in Biological and Physical Flows

This volume showcases lecture notes collected from tutorials presented at the Workshop on Moving Interface Problems and Applications in Fluid Dynamics that was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences, National University of Singapore. As part of the program, these tutorials were conducted by specialists within their respective areas such as Robert Dillon, Zhilin Li, John Lowengrub, Frank Lu and Gretar Tryggvason. The topics in the program encompass modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications like biological treatments with experimental verification, multi-medium flow or multiphase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. This volume benefits graduate students and researchers keen in the field of interfacial flows for application to physical and biological systems. Even beginners will find this volume a very useful starting point with many relevant references applicable.

Handbook of Materials Modeling
  • Language: en
  • Pages: 2903

Handbook of Materials Modeling

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by a...

Modeling Tumor Vasculature
  • Language: en
  • Pages: 411

Modeling Tumor Vasculature

To profoundly understand biology and harness its intricacies for human benefit and the mitigation of human harm requires cross-disciplinary approaches that incorporate sophisticated computational and mathematical modeling techniques. These integrative strategies are essential to achieve rapid and significant progress in issues, in health and disease, which span molecular, cellular and tissue levels. The use of mathematical models to describe various aspects of tumor growth has a very long history, dating back over six decades. Recently, however, experimental and computational advances have improved our in the understanding of how processes act at multiple scales to mediate the development of...

Advances in Multi-fluid Flows
  • Language: en
  • Pages: 452

Advances in Multi-fluid Flows

  • Type: Book
  • -
  • Published: 1996-01-01
  • -
  • Publisher: SIAM

The papers from this conference deal with multi-fluid flows and interfacial instabilities. Papers on multiple-layer convection, wave dynamics in viscous flows, stability of viscoelastic flows, numberical computation of bubbles, and solidification are included.

Multiscale Modeling and Analysis for Materials Simulation
  • Language: en
  • Pages: 285

Multiscale Modeling and Analysis for Materials Simulation

The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on "Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design" from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.

Multiscale Computer Modeling in Biomechanics and Biomedical Engineering
  • Language: en
  • Pages: 397

Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.