You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation a...
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation a...
Extends the theory for normally hyperbolic invariant manifolds to infinite dimensional dynamical systems in a Banach space, thereby providing tools for the study of PDE's and other infinite dimensional equations of evolution. In the process, the authors establish the existence of center-unstable and center-stable manifolds in a neighborhood of the unperturbed compact manifold. No index. Annotation copyrighted by Book News, Inc., Portland, OR
This book solves a problem that has been open for over 20 years--the complete classification of structurally stable quadratic vector fields modulo limit cycles. The authors give all possible phase portraits for such structurally stable quadratic vector fields. No index. Annotation copyrighted by Book News, Inc., Portland, OR
This volume studies multivalued evolution equations driven by time-dependent subdifferential operators and optimal control problems for such systems. The formulation is general enough to incorporate problems with time varying constraints. For evolution inclusions, existence relaxation and structural results for the solution set are proved. For optimal control problems, a general existence theory is developed, different forms of the relaxed problem are introduced and studied, well-posedness properties are investigated and the precise relation between the properties of relaxability and well-posedness is established. Various examples of systems which fit in the abstract framework are analysed.
This book is intended for graduate students and research mathematicians interested in operator algebras
Diagram groups are groups consisting of spherical diagrams (pictures) over monoid presentations. They can be also defined as fundamental groups of the Squier complexes associated with monoid presentations. The authors show that the class of diagram groups contains some well-known groups, such as the R. Thompson group F. This class is closed under free products, finite direct products, and some other group-theoretical operations. The authors develop combinatorics on diagrams similar to the combinatorics on words. This helps in finding some structure and algorithmic properties of diagram groups. Some of these properties are new even for R. Thompson's group F. In particular, the authors describe the centralizers of elements in F, prove that it has solvable conjugacy problems, etc.
Enthält: The Siegel modular variety of degree two and level four / Ronnie Lee, Steven H. Weintraub. Cohomology of the Siegel modular group of degree two and level four / J. William Hoffman, Steven H. Weintraub.
This volume studies the behaviour of a random heat kernel associated with a stochastic partial differential equation, and gives short-time expansion of this heat kernel. The author finds that the dominant exponential term is classical and depends only on the Riemannian distance function. The second exponential term is a work term and also has classical meaning. There is also a third non-negligible exponential term which blows up. The author finds an expression for this third exponential term which involves a random translation of the index form and the equations of Jacobi fields. In the process, he develops a method to approximate the heat kernel to any arbitrary degree of precision.
Explores the failure of analytic-hypoellipticity of two partial differential operators. The operators are sums of squares of real analytic vector fields and satisfy Hormander's condition. By reducing to an ordinary differential operator, the author shows the existence of non-linear eigenvalues, which is used to disprove analytic- hypoellipticity of the original operators. No index. Annotation copyrighted by Book News, Inc., Portland, OR