You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu
This twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of the most wide ranging questions in science, from uncovering the fingerprints of classical chaotic dynamics in quantum systems, to predicting the fate of our own planetary system. Its seven articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a complete description by the mathematician É. Ghys of the paradigmatic Lorenz attractor, and of the famed Lorenz butterfly effect as it is unde...
Included in this volume are the Invited Talks given at the 5th International Congress of Industrial and Applied Mathematics. The authors of these papers are all acknowledged masters of their fields, having been chosen through a rigorous selection process by a distinguished International Program Committee. This volume presents an overview of contemporary applications of mathematics, with the coverage ranging from the rhythms of the nervous system, to optimal transportation, elasto-plasticity, computational drug design, hydrodynamic and meteorological modeling, and valuation in financial markets. Many papers are direct products of the computer revolution: grid generation, multi-scale modeling, high-dimensional numerical integration, nonlinear optimization, accurate floating-point computations and advanced iterative methods. Other papers demonstrate the close dependence on developments in mathematics itself, and the increasing importance of statistics. Additional topics relate to the study of properties of fluids and fluid-flows, or add to our understanding of Partial Differential Equations.
This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwit...
Mixing may be thought of as the operation by which a system evolves from one state of simplicity (initial segregation) to another state of simplicity (complete uniformity). Between these two extremes, complex patterns emerge and die. Questions naturally arise- how can the geometry of complex patterns be characterised, what is the time scale of the process, what structures are involved in the flow? This volume, comprising the proceedings of the NATO ASI on Mixing, attempts to address these questions from the approaches of geometry, kinetics and structure. The ASI which brought together diverse communities with a common interest in the problem of mixing, now provides us with a comprehensive work on the problem of mixing.
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.
Based on a NATO Advanced Summer Institute, this volume discusses physical models, mathematical formalisms, experimental techniques, and applications for ultrafast dynamics of quantum systems. These systems are used in laser optics, spectroscopy, and utilize monochromaticity, spectral brightness, coherence, power density, and tunability of laser sources.
Linear acoustics was thought to be fully encapsulated in physics texts of the 1950s, but this view has been changed by developments in physics during the last four decades. There is a significant new amount of theory that can be used to address problems in linear acoustics and vibration, but only a small amount of reported work does so. This book is an attempt to bridge the gap between theoreticians and practitioners, as well as the gap between quantum and acoustic. Tutorial chapters provide introductions to each of the major aspects of the physical theory and are written using the appropriate terminology of the acoustical community. The book will act as a quick-start guide to the new methods while providing a wide-ranging introduction to the physical concepts.