You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, there has been increasing interest and activity in the area of group actions on affine and projective algebraic varieties. Tech niques from various branches of mathematics have been important for this study, especially those coming from the well-developed theory of smooth compact transformation groups. It was timely to have an interdisciplinary meeting on these topics. We organized the conference "Topological Methods in Alg~braic Transformation Groups," which was held at Rutgers University, 4-8 April, 1988. Our aim was to facilitate an exchange of ideas and techniques among mathematicians studying compact smooth transformation groups, alge braic transformation groups and rel...
Based on two conferences held in Trento, Italy, this volume contains 13 research papers and two survey papers on complex analysis and complex algebraic geometry. The main topics addressed by these leading researchers include: Mori theory polynomial hull vector bundles q-convexity Lie groups and actions on complex spaces hypercomplex structures pseudoconvex domains projective varieties Peer-reviewed and extensively referenced, Complex Analysis and Geometry contains recent advances and important research results. It also details several problems that remain open, the resolution of which could further advance the field.
The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.
This volume contains papers from the Short Thematic Program on Rational Points, Rational Curves, and Entire Holomorphic Curves and Algebraic Varieties, held from June 3-28, 2013, at the Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada. The program was dedicated to the study of subtle interconnections between geometric and arithmetic properties of higher-dimensional algebraic varieties. The main areas of the program were, among others, proving density of rational points in Zariski or analytic topology on special varieties, understanding global geometric properties of rationally connected varieties, as well as connections between geometry and algebraic dynamics exploring new geometric techniques in Diophantine approximation. This book is co-published with the Centre de Recherches Mathématiques.
This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax–Schanuel con...
This book explores the theory and application of locally nilpotent derivations. It provides a unified treatment of the subject, beginning with sixteen First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler’s Theorem for the plane, right up to the most recent results, such as Makar-Limanov’s Theorem for locally nilpotent derivations of polynomial rings. The book also includes a wealth of pexamples and open problems.
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
This volume contains the proceedings of the conference on Interactions of Classical and Numerical Algebraic Geometry, held May 22-24, 2008, at the University of Notre Dame, in honor of the achievements of Professor Andrew J. Sommese. While classical algebraic geometry has been studied for hundreds of years, numerical algebraic geometry has only recently been developed. Due in large part to the work of Andrew Sommese and his collaborators, the intersection of these two fields is now ripe for rapid advancement. The primary goal of both the conference and this volume is to foster the interaction between researchers interested in classical algebraic geometry and those interested in numerical methods. The topics in this book include (but are not limited to) various new results in complex algebraic geometry, a primer on Seshadri constants, analyses and presentations of existing and novel numerical homotopy methods for solving polynomial systems, a numerical method for computing the dimensions of the cohomology of twists of ideal sheaves, and the application of algebraic methods in kinematics and phylogenetics.
This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.
This volume contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups: Structures and Actions, held from March 2–5, 2015, at Tulane University, New Orleans, Louisiana. This volume consists of six articles on algebraic groups, including an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational -theory for singular varieties. In addition, there are three research articles containing previously unpublished foundational results on birational automorphism groups of algebraic varieties; sol...