You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In July 2004, a conference on graph theory was held in Paris in memory of Claude Berge, one of the pioneers of the field. The event brought together many prominent specialists on topics such as perfect graphs and matching theory, upon which Claude Berge's work has had a major impact. This volume includes contributions to these and other topics from many of the participants.
This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. We encounter here a friendly invitation to the field of "counting integer points in polytopes", and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant.
None
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
The intended readership includes both undergraduate and graduate students majoring in computer science as well as researchers in the computer science area. The book is suitable either as a textbook or as a supplementary book in algorithm courses. Over 400 computational problems are covered with various algorithms to tackle them. Rather than providing students simply with the best known algorithm for a problem, this book presents various algorithms for readers to master various algorithm design paradigms. Beginners in computer science can train their algorithm design skills via trivial algorithms on elementary problem examples. Graduate students can test their abilities to apply the algorithm...
"Integers" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. Topics covered by the journal include additive number theory, multiplicative number theory, sequences and sets, extremal combinatorics, Ramsey theory, elementary number theory, classical combinatorial problems, hypergraphs, and probabilistic number theory. Integers also houses a combinatorial games section. This work presents all papers of the 2013 volume in book form.
Hopkins collects the work of 35 instructors who share their innovations and insights about teaching discrete mathematics at the high school and college level. The book's 9 classroom-tested projects, including building a geodesic dome, come with student handouts, solutions, and notes for the instructor. The 11 history modules presented draw on original sources, such as Pascal's "Treatise on the Arithmetical Triangle," allowing students to explore topics in their original contexts. Three articles address extensions of standard discrete mathematics content. Two other articles explore pedagogy specifically related to discrete mathematics courses: adapting a group discovery method to larger classes, and using logic in encouraging students to construct proofs.
This fascinating look at combinatorial games, that is, games not involving chance or hidden information, offers updates on standard games such as Go and Hex, on impartial games such as Chomp and Wythoff's Nim, and on aspects of games with infinitesimal values, plus analyses of the complexity of some games and puzzles and surveys on algorithmic game theory, on playing to lose, and on coping with cycles. The volume is rounded out with an up-to-date bibliography by Fraenkel and, for readers eager to get their hands dirty, a list of unsolved problems by Guy and Nowakowski. Highlights include some of Siegel's groundbreaking work on loopy games, the unveiling by Friedman and Landsberg of the use of renormalization to give very intriguing results about Chomp, and Nakamura's "Counting Liberties in Capturing Races of Go." Like its predecessors, this book should be on the shelf of all serious games enthusiasts.