You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends gathers the advances made within the last 20 years by well-known experts in the area of theoretical and computational chemistry and physics. The title itself reflects the celebration of the twentieth anniversary of the “Conference on Current Trends in Computational Chemistry (CCTCC)” to which all authors have participated and contributed to its success. This volume poses (and answers) important questions of interest to the computational chemistry community and beyond. What is the historical background of the “Structural Chemistry”? Is there any way to avoid the problem of intruder s...
Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and mo...
Topics in Number 50 include: " Investigation of alloy cathode Electrocatalysts " A model Hamiltonian that incorporates the solvent effect to gas-phase density functional theory (DFT) calculations " DFT-based theoretical analysis of ORR mechanisms " Structure of the polymer electrolyte membranes (PEM) " ORR investigated through a DFT-Green function analysis of small clusters " Electrocatalytic oxidation and hydrogenation of chemisorbed aromatic compounds on palladium Electrodes " New models that connect the continuum descriptions with atomistic Monte Carlo simulations " ORR reaction in acid revisited through DFT studies that address the complexity of Pt-based alloys in electrocatalytic proces...
The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD).Features of this book:• Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD• Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers• Provides chemical reactions, interfaces, catalysis, surface phenomena and solidsAlthough the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.
Quantum mechanics can describe the detailed structure and behavior of matter, from electrons, atoms, and molecules, to the whole universe. It is one of the fields of knowledge that yield extraordinary precessions, limited only by the computational resources available. Among these methods is density functional theory (DFT), which permits one to solve the equations of quantum mechanics more efficiently than with any related method.The present volume represents the most comprehensive summary currently available in density functional theory and its applications in chemistry from atomic physics to molecular dynamics. DFT is currently being used by more than fifty percent of computational chemists.