You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The growing concern for human wellbeing has generated an increase in the demand for polyphenols, secondary plant metabolites that exhibit different bioactive properties. This increasing demand is mainly due to the current applications in the food industry where polyphenols are considered essential for human health and nutrition. Advances in Technologies for Producing Food-relevant Polyphenols provides researchers, scientists, engineers, and professionals involved in the food industry with the latest methodologies and equipment useful to extract, isolate, purify, and analyze polyphenols from different available sources, such as herbs, flora, vegetables, fruits, and agro-industrial wastes. Technologies currently used to add polyphenols to diverse food matrices are also included. This book serves a reference to design and scale-up processes to obtain polyphenols from different plant sources and to produce polyphenol-rich foods with bioactive properties (e.g. antioxidant, antibacterial, antiviral, anticancer properties) of interest for human health and wellbeing.
Phenolic compounds are an extremely diverse class of ubiquitous secondary metabolites produced by a variety of organisms playing different biological roles. They have numerous types of demonstrated bioactivities, including antioxidant, antimicrobial, anti-inflammatory, antitumoral, immunomodulator, neuroprotective, cardioprotective, and antidiabetic activities. Marine organisms produce a vast collection of unique phenolic structures, some of them not found in terrestrial habitats. Progress in different aspects is rapidly advancing, and this Special Issue will provide updated information and recent studies on marine phenolics. Specially, this issue is focused on their chemical characterization, elucidation of their structures, evaluation of their biological properties and mechanisms of action, efficient extraction and purification technologies, development of value-added applications, as well as formulation of novel products.
The microbial engineering technologies have been identified as an essential and important subject area of engineering and applied biological sciences. A microbial engineer works on the biological, chemical and engineering aspects of biotechnology, manipulating microbes and developing new uses for microbes. In agriculture, bioprocess engineering, in
Marine Phenolic Compounds: Science and Engineering is a comprehensive resource on these secondary metabolites. Phenolic compounds are secondary metabolites with increasing scientific, commercial and general population interest for their wide distribution, variety and potential applications Less studied than terrestrial sources, marine organisms contain highly interesting phenolic compounds due to their exclusive structures. In addition, the distinctive features of the marine solid matrix, requires novel process technology approaches. The high productivity of marine biomass makes it a renewable source of valuable components with potential for commercial applications. - Includes a section on chemical characterization of highly variable structures from marine phenolics - Provides the chemical composition and structure of these important marine compounds - Presents the bioavailability and bioactivities of marine phenolics to help facilitate the design of new products - Contains contributions from a global team of experts who address the challenges of working with marine phenolic compounds
The high market demand based on consumers’ trust in fish as a healthy and nutritious food resource made fish processing a very dynamic industry, spurring many innovations in processing and packaging methods. Trends in Fish Processing Technologies not only reflects what is currently new in fish processing but also points out where things are heading in this area. This book provides an overview of the modern technologies employed by the industry. It details the advances in fish processing, including high pressure processing (HPP), pulsed electric field (PEF) treatment and minimally heat processing combined with microwave (MW) and radio-frequency (RF). It provides references to food safety ma...
While conventional technologies such as chilling and freezing are used to avoid deteriorative processes like autolytic and microbial spoilage of seafood, innovative technologies have also been developed as a response to economic and environmental demands. Innovative Technologies in Seafood Processing gives information on advances in chilling, freezing, thawing, and packaging of seafood and also updates knowledge of novel process technologies (high-pressure processing, irradiation, ultrasound, pulsed electric field, microwave and radio frequency, sous vide technology, novel thermal sterilization technologies, ozone and nanotechnological applications, and other innovative technologies such as ...
Biofortification, which can be defined as the process of increasing the content/density of essential nutrients and/or its bioavailability of food with valuable compounds, is a promising means of increasing nutrient intakes. Traditional fortification practices in which exogenous nutrients are added to food can increase the content of nutrients but the use of biofortified foods with nutrients also may deliver the compounds in a more available form, as well as boost the overall relative effectiveness of these foods in raising nutrients status. Food Biofortification Technologies presents the state of the art in the field of novel methods of fortification and agricultural treatments as a way to i...
Nanotechnology offers great potential to revolutionize conventional food science and the food industry. The use of nanotechnology in the food industry promises improved taste, flavor, color, texture, and consistency of foodstuffs and increased absorption and bioavailability of nutraceuticals. Food Nanotechnology: Principles and Applications examines the current state of nanoscale phenomena and processes, benefits and risks of nanotechnology. This work contains 18 chapters particularly focused on the design, production, and utilization of nanoparticles, with specific applications for the food industry. Through several studies, it has been proven that nanotechnology can offer distinct advantag...
Global oilseeds industry is expected to expand in the future but would also constitute a platform for a variety of other products from processing waste such as protein meals and aromatic compounds. Edible Oils: Extraction, Processing, and Applications intends to present up to date technologies that are currently used for the extraction and refining of Edible Oils while proposing potential applications for its derivatives. This contribution pushes to consider market transformation driven by environmental concerns and customer’s envy to bring quality attributes, energy efficiency and waste disposal into the heart of innovation. This work is aimed at professionals and academics including rese...
This Encyclopedia of Biotechnology is a component of the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Biotechnology draws on the pure biological sciences (genetics, animal cell culture, molecular biology, microbiology, biochemistry, embryology, cell biology) and in many instances is also dependent on knowledge and methods from outside the sphere of biology (chemical engineering, bioprocess engineering, information technology, biorobotics). This 15-volume set contains several chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It carries state-of-the-art knowledge in the field and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs