You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 23rd International Symposium on the Mathematical Foundations of Computer Science, MFCS'98, held in Brno, Czech Republic, in August 1998. The 71 revised full papers presented were carefully reviewed and selected from a total of 168 submissions. Also included are 11 full invited surveys by prominent leaders in the area. The papers are organized in topical sections on problem complexity; logic, semantics, and automata; rewriting; automata and transducers; typing; concurrency, semantics, and logic; circuit complexity; programming; structural complexity; formal languages; graphs; Turing complexity and logic; binary decision diagrams, etc..
Mika Hirvensalo maps out the new multidisciplinary research area of quantum computing. The text contains an introduction to quantum computing as well as the most important recent results on the topic. The presentation is uniform and computer science-oriented. Thus, the book differs from most of the previous ones which are mainly physics-oriented. The special style of presentation makes the theory of quantum computing accessible to a larger audience. Many examples and exercises ease the understanding. In this second edition, a new chapter on quantum information has been added and numerous corrections, amendments, and extensions have been incorporated throughout the entire text.
This volume constitutes the proceedings of the Second International Symposium, Latin American Theoretical Informatics, LATIN '95, held in Valparaiso, Chile in April 1995. The LATIN symposia are intended to be comprehensive events on the theory of computing; they provide a high-level forum for theoretical computer science research in Latin America and facilitate a strong and healthy interaction with the international community. The 38 papers presented in this volume were carefully selected from 68 submissions. Despite the intended broad coverage there are quite a number of papers devoted to computational graph theory; other topics strongly represented are complexity, automata theory, networks, symbolic computation, formal languages, data structures, and pattern matching.
ETAPS 2001 was the fourth instance of the European Joint Conferences on Theory and Practice of Software. ETAPS is an annual federated conference that was established in 1998 by combining a number of existing and new conferences. This year it comprised ve conferences (FOSSACS, FASE, ESOP, CC, TACAS), ten satellite workshops (CMCS, ETI Day, JOSES, LDTA, MMAABS, PFM, RelMiS, UNIGRA, WADT, WTUML), seven invited lectures, a debate, and ten tutorials. The events that comprise ETAPS address various aspects of the system de- lopment process, including speci cation, design, implementation, analysis, and improvement. The languages, methodologies, and tools which support these - tivities are all well within its scope. Di erent blends of theory and practice are represented, with an inclination towards theory with a practical motivation on one hand and soundly-based practice on the other. Many of the issues involved in software design apply to systems in general, including hardware systems, and the emphasis on software is not intended to be exclusive.
The first edition of the monograph Information and Randomness: An Algorithmic Perspective by Crist ian Calude was published in 1994. In my Foreword I said: "The research in algorithmic information theory is already some 30 years old. However, only the recent years have witnessed a really vigorous growth in this area. . . . The present book by Calude fits very well in our series. Much original research is presented. . . making the approach richer in consequences than the classical one. Remarkably, however, the text is so self-contained and coherent that the book may also serve as a textbook. All proofs are given in the book and, thus, it is not necessary to consult other sources for classroom...
"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.
This book is an intellectually stimulating excursion into mathematical machines and structures capable for a universal computation. World top experts in computer science and mathematics overview exciting and intriguing topics of logical theory of monoids, geometry of Gauss word, philosophy of mathematics in computer science, asynchronous and parallel P-systems, decidability in cellular automata, splicing systems, reversible Turing machines, information flows in two-way finite automata, prime generators in automaton arrays, Grossone and Turing machines, automaton models of atomic lattices. The book is full of visually attractive examples of mathematical machines, open problems and challenges for future research. Those interested in the advancement of a theory of computation, philosophy of mathematics, future and emergent computing paradigms, architectures and implementations will find the book vital for their research and development.
This book contains papers presented at the 2nd International Conference on Unconventional Models of Computation (UMCK'2K), which was held at Solvay Institutes, Brussels, Belgium, in December 2000. Computers as we know them may be getting better and cheaper, and doing more for us, but they are still unable to cope with many tasks of practical interest. Nature, though, has been 'computing' with molecules and cells for billions of years, and these natural processes form the main motivation for the construction of radically new models of computation, the core theme of the papers in this volume. Unconventional Models of Computation, UMCK'2K covers all major areas of unconventional computation, including quantum computing, DNA-based computation, membrane computing and evolutionary algorithms.
This book constitutes the refereed proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2002, held in Antibes - Juan les Pins, France, in March 2002. The 50 revised full papers presented together with three invited papers were carefully reviewed and selected from a total of 209 submissions. The book offers topical sections on algorithms, current challenges, computational and structural complexity, automata and formal languages, and logic in computer science.