You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With considerations such as complex-dimensional geometries and nonlinearity, the computational solution of partial differential systems has become so involved that it is important to automate decisions that have been normally left to the individual. This book covers such decisions: 1) mesh generation with links to the software generating the domain geometry, 2) solution accuracy and reliability with mesh selection linked to solution generation. This book is suited for mathematicians, computer scientists and engineers and is intended to encourage interdisciplinary interaction between the diverse groups.
This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations...
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of vis...
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of ...
The articles in this volume present the state of the art in a variety of areas of discrete probability, including random walks on finite and infinite graphs, random trees, renewal sequences, Stein's method for normal approximation and Kohonen-type self-organizing maps. This volume also focuses on discrete probability and its connections with the theory of algorithms. Classical topics in discrete mathematics are represented as are expositions that condense and make readable some recent work on Markov chains, potential theory and the second moment method. This volume is suitable for mathematicians and students.