You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
For one-semester or two-semester undergraduate courses in Abstract Algebra. This new edition has been completely rewritten. The four chapters from the first edition are expanded, from 257 pages in first edition to 384 in the second. Two new chapters have been added: the first 3 chapters are a text for a one-semester course; the last 3 chapters are a text for a second semester. The new Chapter 5, Groups II, contains the fundamental theorem of finite abelian groups, the Sylow theorems, the Jordan-Holder theorem and solvable groups, and presentations of groups (including a careful construction of free groups). The new Chapter 6, Commutative Rings II, introduces prime and maximal ideals, unique factorization in polynomial rings in several variables, noetherian rings and the Hilbert basis theorem, affine varieties (including a proof of Hilbert's Nullstellensatz over the complex numbers and irreducible components), and Grobner bases, including the generalized division algorithm and Buchberger's algorithm.
A guide to modern algebra for mathematics teachers. It makes explicit connections between abstract algebra and high-school mathematics.
This text offers a clear, efficient exposition of Galois Theory with exercises and complete proofs. Topics include: Cardano's formulas; the Fundamental Theorem; Galois' Great Theorem (solvability for radicals of a polynomial is equivalent to solvability of its Galois Group); and computation of Galois group of cubics and quartics. There are appendices on group theory and on ruler-compass constructions. Developed on the basis of a second-semester graduate algebra course, following a course on group theory, this book will provide a concise introduction to Galois Theory suitable for graduate students, either as a text for a course or for study outside the classroom.
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Considered a classic by many, A First Course in Abstract Algebra is an in-depth, introductory text which gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. The Sixth Edition continues its tradition of teaching in a classical manner, while integrating field theory and new exercises.
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory ex...
" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be fo...