You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.
This book provides a quantitative assessment of the advances in the area of catalysis and kinetics in microheterogeneous systems. It is an invaluable resource for chemists interested in catalysis and reaction kinetics, and physicists interested in semiconductors, metal clusters and catalysis.
None
Coverage includes five chapters entitled Criticality of Ionic Fluids; Mode Coupling Theory Approach to Liquid State Dynamics; Anomalous Stochastic Processes in the Fractional Dynamics Framework: Fokker-Planck; Moment Free Energies for Polydisperse Systems; and Chemical Physics of the Electrode-Electrolyte Interface.
The science of energy harvesting materials is experiencing phenomenal growth and attracting huge interest. Exploiting recently acquired insights into the fundamental mechanisms and principles of photosynthesis, it is now possible to forge entirely new and distinctive molecular materials and devise artificial photosystems and applications far remote from conventional solar cell technology. In this comprehensive treatment of energy harvesting, a team of internationally acclaimed scientists at the forefront of the subject paint a state-of-the-art picture of modern energy harvesting materials science. Covering all aspects of the subject, ranging from natural plant and bacterial photosystems, through their biologically inspired synthetic analogs, to other photoactive molecular materials such as dendrimers, the book also establishes the theory and underlying principles across the full range of light harvesting systems. With an authoritative, comprehensive and well-referenced content, it will appeal to all students, researchers and technologists interested or involved in solar energy, photobiology and photoactive materials science.
Fractals, Diffusion and Relaxation in Disordered Complex Systems is a special guest-edited, two-part volume of Advances in Chemical Physics that continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
When I planned this book seven years ago I had my graduate students at the University of Ulm in mind, diploma as well as doctoral students, who often asked me what literature they should work with. I used to suggest a list of ten to twenty (for my taste: excellent) treatises on NMR. Apparently this did not make them entirely happy. The difficulty which newcomers to the field face is to practise and to apply theoretical formalisms from different sources while still learning the principles of NMR and being actively engaged in NMR research. Although the text presented here is largely based on my lecture notes, the result is a "working book" rather than an introduction. It is intended to provide...
Computational Physics. Selected Methods, Simple Exercises, Serious Applications is an overview written by leading researchers of a variety of fields and developments. Selected Methods introduce the reader to current fields, including molecular dynamics, hybrid Monte-Carlo algorithms, and neural networks. Simple Exercises give hands-on advice for effective program solutions from a small number of lines to demonstration programs with elaborate graphics. Serious Applications show how questions concerning, for example, aging, many-minima optimisation, or phase transitions can be treated by appropriate tools. The source code and demonstration graphics are included on a 3.5" MS-DOS diskette.
Analysis and Compensation of Kinetic Friction in Robotic and Mechatronic Control Systems comprehensively covers kinetic friction in a robotics, mechatronics, and control engineering context. Providing the theory behind kinetic friction, as well as compensation methods and practical solutions, the text is a key companion to studying different control systems. Beginning with a clear introduction to the subject, the book goes on to include three main facets of kinetic friction, starting with phenomena of kinetic friction in drives. This chapter explains friction interfaces and friction effects. Following from this, the next chapter looks at motion dynamics with friction, which introduces dynami...