You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Random trees and tree-valued stochastic processes are of particular importance in many fields. Using the framework of abstract "tree-like" metric spaces and ideas from metric geometry, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behavior of such objects when the number of vertices goes to infinity. This publication surveys the relevant mathematical background and present some selected applications of the theory.
This volume contains the proceedings of the XII Symposium of Probability and Stochastic Processes which took place at Universidad Autonoma de Yucatan in Merida, Mexico, on November 16–20, 2015. This meeting was the twelfth meeting in a series of ongoing biannual meetings aimed at showcasing the research of Mexican probabilists as well as promote new collaborations between the participants. The book features articles drawn from different research areas in probability and stochastic processes, such as: risk theory, limit theorems, stochastic partial differential equations, random trees, stochastic differential games, stochastic control, and coalescence. Two of the main manuscripts survey recent developments on stochastic control and scaling limits of Markov-branching trees, written by Kazutoshi Yamasaki and Bénédicte Haas, respectively. The research-oriented manuscripts provide new advances in active research fields in Mexico. The wide selection of topics makes the book accessible to advanced graduate students and researchers in probability and stochastic processes.
This volume contains refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 29 to June 3, 2004. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering.
The volume includes lecture notes and research papers by participants of the Seventh Symposium on Probability and Stochastic Processes held in Mexico City. The lecture notes introduce recent advances in stochastic calculus with respect to fractional Brownian motion, principles of large deviations and of minimum entropy concerning equilibrium prices in random economic systems, and give a complete and thorough survey of credit risk theory. The research papers cover areas such as financial markets, Gaussian processes, stochastic differential equations, stochastic integration, quantum dynamical semigroups, self-intersection local times, etc. Readers should have a basic background in probability theory, stochastic integration, and stochastic differential equations. The book is suitable for graduate students and research mathematicians interested in probability, stochastic processes, and risk theory.
This volume contains the proceedings of the First Mathematical Congress of the Americas, held from August 5-9, 2013, in Guanajuato, México. With the participation of close to 1,000 researchers from more than 40 countries, the meeting set a benchmark for mathematics in the two continents. The papers, written by some of the plenary and invited speakers, as well as winners of MCA awards, cover new developments in classic topics such as Hopf fibrations, minimal surfaces, and Markov processes, and provide recent insights on combinatorics and geometry, isospectral spherical space forms, homogenization on manifolds, and Lagrangian cobordism, as well as applications to physics and biology.
Consists of papers given at the ICMS meeting held in 1994 on this topic, and brings together some of the world's best known authorities on stochastic partial differential equations.
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential eq...
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.