You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects:$L2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry. The techniques employed cover a wide range of methods borrowed from the heart of mathem...
Contributions by leading experts in the field provide a snapshot of current progress in polynomials and number theory.
The second Women in Numbers workshop (WIN2) was held November 6-11, 2011, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. During the workshop, group leaders presented open problems in various areas of number theory, and working groups tackled those problems in collaborations begun at the workshop and continuing long after. This volume collects articles written by participants of WIN2. Survey papers written by project leaders are designed to introduce areas of active research in number theory to advanced graduate students and recent PhDs. Original research articles by the project groups detail their work on the open problems tackled during and after WIN2. Other a...
Proceedings of the International Conference on Number Theory organized by the Stefan Banach International Mathematical Center in Honor of the 60th Birthday of Andrzej Schinzel, Zakopane, Poland, June 30-July 9, 1997.
Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.
This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.
This book provides a self-contained overview of the role of conformal groups in geometry and mathematical physics. It features a careful development of the material, from the basics of Clifford algebras to more advanced topics. Each chapter covers a specific aspect of conformal groups and conformal spin geometry. All major concepts are introduced and followed by detailed descriptions and definitions, and a comprehensive bibliography and index round out the work. Rich in exercises that are accompanied by full proofs and many hints, the book will be ideal as a course text or self-study volume for senior undergraduates and graduate students.