Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Knot Theory and Its Applications
  • Language: en
  • Pages: 376

Knot Theory and Its Applications

This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.

An Index of a Graph with Applications to Knot Theory
  • Language: en
  • Pages: 118

An Index of a Graph with Applications to Knot Theory

There are three chapters to the memoir. The first defines and develops the notion of the index of a graph. The next chapter presents the general application of the graph index to knot theory. The last section is devoted to particular examples, such as determining the braid index of alternating pretzel links. A second result shows that for an alternating knot with Alexander polynomial having leading coefficient less than 4 in absolute value, the braid index is determined by polynomial invariants.

Theta Functions and Knots
  • Language: en
  • Pages: 469

Theta Functions and Knots

This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian Ch...

Quantum Topology - Proceedings Of The Conference
  • Language: en
  • Pages: 390

Quantum Topology - Proceedings Of The Conference

This volume contains the conference on quantum topology, held at Kansas State University, Manhattan, KS, 24 - 28 March 1993.Quantum topology is a rapidly growing field of mathematics dealing with the recently discovered interactions between low-dimensional topology, the theory of quantum groups, category theory, C∗-algebra theory, gauge theory, conformal and topological field theory and statistical mechanics. The conference, attended by over 60 mathematicians and theoretical physicists from Canada, Denmark, England, France, Japan, Poland and the United States, was highlighted by lecture series given by Louis Kauffman, Univ. of Illinois at Chicago and Nicholai Reshetikhin, Univ. of Califonia, Berkeley.

Encyclopaedia of Mathematics, Supplement III
  • Language: en
  • Pages: 564

Encyclopaedia of Mathematics, Supplement III

This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Canadian Journal of Mathematics
  • Language: en
  • Pages: 192

Canadian Journal of Mathematics

  • Type: Magazine
  • -
  • Published: 1989-04
  • -
  • Publisher: Unknown

None

Advances in Topological Quantum Field Theory
  • Language: en
  • Pages: 353

Advances in Topological Quantum Field Theory

This volume is the conference proceedings of the NATO ARW during August 2001 at Kananaskis Village, Canada on 'New Techniques in Topological Quantum Field Theory'. This conference brought together specialists from a number of different fields all related to Topological Quantum Field Theory. The theme of this conference was to attempt to find new methods in quantum topology from the interaction with specialists in these other fields. The featured articles include papers by V. Vassiliev on combinatorial formulas for cohomology of spaces of Knots, the computation of Ohtsuki series by N. Jacoby and R. Lawrence, and a paper by M. Asaeda and J. Przytycki on the torsion conjecture for Khovanov homology by Shumakovitch. Moreover, there are articles on more classical topics related to manifolds and braid groups by such well known authors as D. Rolfsen, H. Zieschang and F. Cohen.

Encyclopedia of Knot Theory
  • Language: en
  • Pages: 954

Encyclopedia of Knot Theory

  • Type: Book
  • -
  • Published: 2021-02-10
  • -
  • Publisher: CRC Press

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has p...

The Knot Book
  • Language: en
  • Pages: 330

The Knot Book

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

Knots, Links, Spatial Graphs, and Algebraic Invariants
  • Language: en
  • Pages: 202

Knots, Links, Spatial Graphs, and Algebraic Invariants

This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.