You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Fifth International Symposium on the Characterisation of Porous Solids (COPS-V) was held at Heidelberg, Germany, from May 30 to June 2, 1999. About 220 participants from 25 countries enjoyed a very successful meeting with 32 lectures and 155 poster presentations. The Symposium started with a highly stimulating lecture by Sir John Meurig Thomas, Cambridge, highlighting the recent developments in engineering of new catalysts. The following two full sessions were devoted to theory, modelling and simulation which provide the basis for the interpretation of pore structural data of adsorbents and finely dispersed solids. Sessions 2 and 3 focused on the advances in the synthesis and characterisation of highly ordered inorganic adsorbents and carbons. Sessions 4 and 5 addressed important questions with respect to the characterisation of porous solids by sorption measurement and other related techniques. The intensive three-day programme provided a stimulating forum for the exchange of novel research findings, concepts, techniques and materials which are collected in this volume.
The Fifth International Symposium on the Characterisation of Porous Solids (COPS-V) was held at Heidelberg, Germany, from May 30 to June 2, 1999. About 220 participants from 25 countries enjoyed a very successful meeting with 32 lectures and 155 poster presentations. The Symposium started with a highly stimulating lecture by Sir John Meurig Thomas, Cambridge, highlighting the recent developments in engineering of new catalysts. The following two full sessions were devoted to theory, modelling and simulation which provide the basis for the interpretation of pore structural data of adsorbents and finely dispersed solids. Sessions 2 and 3 focused on the advances in the synthesis and characterisation of highly ordered inorganic adsorbents and carbons. Sessions 4 and 5 addressed important questions with respect to the characterisation of porous solids by sorption measurement and other related techniques. The intensive three-day programme provided a stimulating forum for the exchange of novel research findings, concepts, techniques and materials which are collected in this volume.
One of the most important issues in the construction of future magnetic confinement fusion machines is that of the materials of which they are constructed, and one of the key points of proper material choice is the recycle of hydrogen isotopes with materials at the plasma face. Tritium machines demand high safety and economy, which in turn requires the lowest possible T inventory and smallest possible permeation through the plasma facing materials. The recycle behaviour of the in-vessel components must also be known if the plasma reaction is to predictable and controllable, and finally, the fuel cycle and plasma operating regimes may be actively controlled by special materials and methods. The book discusses both laboratory experiments exploring the basic properties of non-equilibrium hydrogen-solid systems (diffusion, absorption, boundary processes) and experimental results obtained from existing fusion machines under conditions simulating future situations to some extent. Contributions are from experts in the fields of nuclear fusion, materials science, surface science, vacuum science and technology, and solid state physics.
The first symposium on Access in Nanoporous Materials was held in Lansing, Michigan on June 7-9, 1995. The five years that have passed since that initial meeting have brought remarkable advances in all aspects of this growing family of materials. In particular, impressive progress has been achieved in the area of novel self-assembled mesoporous materials, their synthesis, characterization and applications. The supramolecular self-assembly of various inorganic and organic species into ordered mesostructures became a powerful method for synthesis of mesoporous molecular sieves of tailored framework composition, pore structure, pore size and desired surface functionality for advanced applicatio...
This one-stop reference is the first book on this emerging and rapid developing field with a focus on synthesis and catalysis. As such, it covers all aspects from academia and industry in a clearly structured way. Leading experts provide the background information as an initial aid for newcomers to the field, while chapters on different reaction types and industrial applications make this an equally vital resource for specialists. From the contents: - Introduction and background - Fabrication of microractors - Properties and use of microreactors - Organic chemistry in microreactors - Homogeneous reactions (including photochemical and electrochemical reactions) - Heterogeneous reactions - Bip...
Adopting a unique integrated engineering approach, this text covers all aspects of fuel processing: catalysts, reactors, chemical plant components and integrated system design. While providing an introduction to the subject, it also contains recent research developments, making this an invaluable handbook for chemical, power and process engineers, electrochemists, catalytic chemists, materials scientists and engineers in power technology.
On the contrary, flow continuous processes present a series of advantages leading to new ways to synthesise chemical products.
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
Catalysis is the acceleration of a chemical reaction by a catalyst, a substance that notably affects the rate of a chemical reaction without itself being consumed or altered. Since 1948, Advances in Catalysis has filled the gap between the papers that report on and the textbooks that teach in the diverse areas of catalysis research. The editors of and contributors to Advances in Catalysis are dedicated to recording progress in this area. - Provides a comprehensive review of all aspects of catalytic research - Contains in-depth, critical, state-of-the-art reports