You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The increasing demand for environmentally friendly materials and the need for cheaper fibres points the search in the direction of natural products such as bark, leaves, scales or shells. The aim of this book is to provide a forum to review the recent advances in the area of plant and animal-based composites and identify possible trends for further developments.
Hybrid composites have exceptional features due to superior mechanical properties, fatigue/impact resistance, and balanced thermal distortion stability. This book covers the latest developments in the hybrid composite materials, processing, characterization, and modeling of materials behaviour. While covering the same, the book also provides insight on its applications in medical science.
The sustainability of any process lies in the eco-friendly and economical production of products for applications. Bio-based materials are emerging as raw materials for different products and applications. The book covers cellulose, chitosan, silk, collagen and gelatin bio-based materials. It describes their use in biomedical applications, such as orthopaedic implant, drug delivery, tissue culture, biosensor and engineering applications such as fuel cells, energy storage and packaging. It concludes with the use of bio-based materials as precursors for biorefinery, biolubricants, membranes and adsorbents.
In today's society researchers are more focused on cleaner materials production for environmental sustainability. This approach aims at reducing waste and the development of materials with enhanced properties and functionality. This book focuses on optimizing manufacturing processes for sustainable composite materials. It discusses optimum utilization of resources by using minimum effort to save cost and energy.
A significant effort is being put on to produce special materials for highly demanding applications for industrial sectors. These needs can be met by utilizing varieties of waste residues or by-products of several industrial, agricultural and natural process and turning them into practical and sustainable products. This book discusses the production of reinforcement particles and composite materials manufactured from various waste feedstocks.
The applications of biocomposite materials are increasing in aerospace, automobile, and household items due to their biodegradable, renewable, non-corrosion, and high strength to weight ratio properties. The processing and characterization of biofiberreinforced biocomposite materials are vital for their strength and performance. This book discusses the properties, chemical treatment, and compatibility of biofi bers with materials.
The volume "Nanocomposite and Nanohybrid Materials: Processing and Applications" is an outstanding resource for exploring the findings and recent trends of nanocomposites and nanohybrid materials. Herein, a full grasp of cutting-edge research, new technologies, and exciting opportunities linked with nanocomposites and nanohybrids. Nanomaterials, including their synthesis, development, and advanced properties, are thoroughly investigated. Several processes for preparing nanomaterials are presented to the reader, along with their characteristics and development phase. It offers the latest applications of nanoparticles for diagnosing and treating neurological disorders and their use in biological imaging and targeted cancer treatments. This provides a strong basis for future study and innovation in this intriguing issue that is very important to methodology, qualitative approaches, and applications.
This book explores new possibilities in the domain of abrasive waterjet machining (AWJM) of composites and polymers. AWJM is a sustainable and well industrialized process, but some parameters of AWJM process need to be optimized according to new composites materials and polymers to obtain the desired machining characteristics. This book presents the reader with the state of the art methodology to cut the advanced composite materials.
"Surface Integrity in Machining" describes the fundamentals and recent advances in the study of surface integrity in machining processes. "Surface Integrity in Machining" gathers together research from international experts in the field. Topics covered include: the definition of surface integrity and its importance in functional performance; surface topography characterization and evaluation; microstructure modification and the mechanical properties of subsurface layers; residual stresses; surface integrity characterization methods; and surface integrity aspects in machining processes. A useful reference for researchers in tribology and materials, mechanical and materials engineers, and machining professionals, "Surface Integrity in Machining" can be also used as a textbook by advanced undergraduate and postgraduate students.