You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In many respects, biology is the new frontier for applied mathematicians. This book demonstrates the important role mathematics plays in the study of some biological problems. It introduces mathematicians to the biological sciences and provides enough mathematics for bioscientists to appreciate the utility of the modelling approach. The book presents a number of diverse topics, such as neurophysiology, cell biology, immunology, and human genetics. It examines how research is done,what mathematics is used, what the outstanding questions are, and how to enter the field. Also given is a brief historical survey of each topic, putting current research into perspective. The book is suitable for mathematicians and biologists interested in mathematical methods in biology.
The kinetic mechanisms by which enzymes interact with inhibitors and activators, collectively called modifiers, are scrutinized and ranked taxonomically into autonomous species in a way similar to that used in the biological classification of plants and animals. The systematization of the mechanisms is based on two fundamental characters: the allosteric linkage between substrate and modifier and the factor by which a modifier affects the catalytic constant of the enzyme. Combinations of the physically significant states of these two characters in an ancestor-descendant-like fashion reveal the existence of seventeen modes of interaction that cover the needs of total, partial and fine-tuning m...
This book compiles detailed information concerning a dozen of the best known allosteric enzymes, and so allows the comparison of their regulatory mechanisms and the confrontation of these mechanisms with the theoretical models. Stimulating and unexpected ideas emerge from these comparisons and emphasize the importance of developing various methods of investigation such as crystallography, X-ray solution scattering, and the study of fast movements in proteins and site-directed mutagenesis. This book is addressed to students and researchers interested in structure-function relationship in proteins, enzymology and metabolic regulation. It is also a basis for teaching.
This book explores Systems Biology as the understanding of biological network behaviors, and in particular their dynamic aspects, which requires the utilization of mathematical modeling tightly linked to experiment. A variety of approaches are discussed here: the identification and validation of networks, the creation of appropriate datasets, the development of tools for data acquisition and software development, and the use of modeling and simulation software in close concert with experiment.
This book brings together drug design practitioners, all leaders in their field, who are actively advancing the field of quantitative methods to guide drug discovery, from structure-based design to empirical statistical models - from rule-based approaches to toxicology to the fields of bioinformatics and systems biology. The aim of the book is to show how various facets of the drug discovery process can be addressed in a quantitative fashion (ie: numerical analysis to enable robust predictions to be made). Each chapter includes a brief review of the topic showing the historical development of.
Molecular and Cellular Enzymology addresses not only experienced enzymologists but also students, teachers and academic and industrial researchers who are confronted with enzymological problems during their fundamental or applied research. In this field there is an urgent need for training in order to meet the requirements of both research and industrial endeavours. This book consists of several levels. Practical aspects and elementary explanations are given for the benefit of non-specialists’ and students’ understanding. In order to facilitate the task of students, two typographies have been adopted. The main text corresponds to basic knowledge, whereas text in a smaller font provides m...
Suitable for graduates and undergraduates in environmental biology, comparative physiology, and marine biology, this text lays out the principles of mechanistic comparative physiology in an ecological and evolutionary context. This text lays out the principles of mechanistic comparative physiology in an ecological and evolutionary context. The subject of evolutionary physiology has been advancing considerably and this book will bring readers up to date on a number of new techniques, ideas and data. Topics include NMR spectroscopy and molecular biology, evolution and adaptation, phylogenetically-based analytical techniques and more.
This volume continues the discussion of the problems of in vivo and in vitro. The recently solved X-ray structure of the mitochondrial creatine kinase and its molecular biology cellular bioenergetics - the tradition we started in 1994 by publication of the focused issue of Molecular and Cellular are analyzed with respect to its molecular physiology and Biochemistry, volume 133/134 and a book 'Cellular Bio functional coupling to the adenine nucleotide translocase, as energetics: role of coupled creatine kinases' edited by V. Saks well as its participation, together with the adenylate kinase and R. Ventura-Clapier and published by Kluwer Publishers, system, in intracellular energy transfer. Th...
This is the definitive, one-stop resource on preclinical drug evaluation for potential mitochondrial toxicity, addressing the issue upfront in the drug development process. It discusses mitochondrial impairment to organs, skeletal muscle, and nervous systems and details methodologies used to assess mitochondria function. It covers both in vitro and in vivo methods for analysis and includes the latest models. This is the authoritative reference on drug-induced mitochondrial dysfunction for safety assessment professionals in the pharmaceutical industry and for pharmacologists and toxicologists in both drug and environmental health sciences.