You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, special functions have been developed and applied in a variety of fields, such as combinatorics, astronomy, applied mathematics, physics, and engineering due to their remarkable properties. This volume expands our understanding of special functions by highlighting recent trends in numerical analysis. Interesting applications of special functions and partial differential equations are demonstrated by 15 chapters. Many chapters highlight the importance of numerical techniques and the results of complex analysis. Contributions in the book emphasize the mathematical treatment of questions arising in natural sciences and engineering, particularly those that involve novel problems...
"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.
None
In the past few decades, many significant insights have been gained into several areas of computational methods in sciences and engineering. New problems and methodologies have appeared in some areas of sciences and engineering. There is always a need in these fields for the advancement of information exchange.The aim of this book is to facilitate the sharing of ideas, problems and methodologies between computational scientists and engineers in several disciplines. Extended abstracts of papers on the recent advances regarding computational methods in sciences and engineering are provided. The book briefly describes new methods in numerical analysis, computational mathematics, computational and theoretical physics, computational and theoretical chemistry, computational biology, computational mechanics, computational engineering, computational medicine, high performance computing, etc.
Continuous developments in software and intelligence sciences have brought together the studies of both natural and machine intelligence and the relationship between the function of the brain and the abstract soft mind; creating a new multidisciplinary field of study. Advances in Abstract Intelligence and Soft Computing brings together the latest research in computer science: theoretical software engineering, cognitive science and informatics, and also their influence on the processes of natural and machine intelligence. This book is a collection of widespread research in the constant expansions on this emerging discipline.
These proceedings of the 18th International Conference on Difference Equations and Applications cover a number of different aspects of difference equations and discrete dynamical systems, as well as the interplay between difference equations and dynamical systems. The conference was organized by the Department of Mathematics at the Universitat Autònoma de Barcelona (UAB) under the auspices of the International Society of Difference Equations (ISDE) and held in Barcelona (Catalonia, Spain) in July 2012. Its purpose was to bring together experts and novices in these fields to discuss the latest developments. The book gathers contributions in the field of combinatorial and topological dynamics, complex dynamics, applications of difference equations to biology, chaotic linear dynamics, economic dynamics and control and asymptotic behavior, and periodicity of difference equations. As such it is of interest to researchers and scientists engaged in the theory and applications of difference equations and discrete dynamical systems.
This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension...